Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pit
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Erik Strand
pit
Commits
7f38f5fe
Commit
7f38f5fe
authored
6 years ago
by
Erik Strand
Browse files
Options
Downloads
Patches
Plain Diff
Answer 9.3 and 9.4
parent
1ceca2f3
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
_psets/7.md
+159
-0
159 additions, 0 deletions
_psets/7.md
with
159 additions
and
0 deletions
_psets/7.md
+
159
−
0
View file @
7f38f5fe
...
@@ -242,11 +242,103 @@ between layers with indices $$n_1$$ and $$n_3$$.
...
@@ -242,11 +242,103 @@ between layers with indices $$n_1$$ and $$n_3$$.
What is the reflectivity? Think about matching the boundary conditions, or about the multiple
What is the reflectivity? Think about matching the boundary conditions, or about the multiple
reflections.
reflections.
Using Snell's Law and the small angle "approximation" as in the previous problem, we can find the
the coefficients of reflection and transmission (this time for field strength instead of power, for
reasons that will become clear). For this problem it's important to keep track of the direction in
which light crosses (or reflects from) the dielectric barriers, so I'll use subscripts throughout.
$$
\b
egin{align
*
}
R_{12}
&=
\l
im_{
\t
heta_0
\t
o 0}
\f
rac{
\s
in
\l
eft(
\t
heta_0
\l
eft(
\f
rac{n_1}{n_2} - 1
\r
ight)
\r
ight)}
{
\s
in
\l
eft(
\t
heta_0
\l
eft(
\f
rac{n_1}{n_2} + 1
\r
ight)
\r
ight)}
\\
&=
\l
im_{
\t
heta_0
\t
o 0}
\f
rac{
\t
heta_0
\l
eft(
\f
rac{n_1}{n_2} - 1
\r
ight)}
{
\t
heta_0
\l
eft(
\f
rac{n_1}{n_2} + 1
\r
ight)}
\\
&=
\f
rac{
\l
eft(
\f
rac{n_1}{n_2} - 1
\r
ight)}{
\l
eft(
\f
rac{n_1}{n_2} + 1
\r
ight)}
\\
&=
\f
rac{n_1 - n_2}{n_1 + n_2}
\\
T_{12}
&=
\l
im_{
\t
heta_0
\t
o 0}
\f
rac{2
\s
in
\l
eft(
\t
heta_0
\f
rac{n_1}{n_2}
\r
ight)
\c
os
\t
heta_0}
{
\s
in
\l
eft(
\t
heta_0
\l
eft(
\f
rac{n_1}{n_2} + 1
\r
ight)
\r
ight)}
\\
&=
\l
im_{
\t
heta_0
\t
o 0}
\f
rac{2
\t
heta_0
\f
rac{n_1}{n_2}}
{
\t
heta_0
\l
eft(
\f
rac{n_1}{n_2} + 1
\r
ight)}
\\
&=
\f
rac{2
\f
rac{n_1}{n_2}}{
\l
eft(
\f
rac{n_1}{n_2} + 1
\r
ight)}
\\
&=
\f
rac{2 n_1}{n_1 + n_2}
\e
nd{align
*
}
$$
Note that $$R_{12} = -R_{21}$$. We'll use this later.
Now the reflections can be modeled as an infinite sum, taking into account the phase shift that
results from travel through the middle medium.
$$
\b
egin{align
*
}
E^-
&= E^+ R_{12} + E^+ T_{12} R_{23} T_{21} e^{2 i k_2 d}
+
E^+ T_{12} R_{23}^2 T_{21} R_{21} e^{4 i k_2 d}
\\
&= E^+ R_{12} + E^+ T_{12} R_{23} T_{21} e^{2 i k_2 d}
\s
um_{n = 0}^
\i
nfty
\l
eft( R_{21} R_{23} e^{2 i k_2 d}
\r
ight)^n
\\
&= E^+ R_{12} +
\f
rac{E^+ T_{12} R_{23} T_{21} e^{2 i k_2 d}}
{1 - R_{21} R_{23} e^{2 i k_2 d}}
\\
&=
\f
rac{E^+ R_{12}
\l
eft( 1 - R_{21} R_{23} e^{2 i k_2 d}
\r
ight)
+
E^+ T_{12} R_{23} T_{21} e^{2 i k_2 d}} {1 - R_{21} R_{23} e^{2 i k_2 d}}
\\
&= E^+
\f
rac{R_{12}
\l
eft( 1 + R_{12} R_{23} e^{2 i k_2 d}
\r
ight)
+
T_{12} R_{23} T_{21} e^{2 i k_2 d}} {1 + R_{12} R_{23} e^{2 i k_2 d}}
\\
&= E^+
\f
rac{R_{12} +
\l
eft( R_{12}^2 + T_{12} T_{21}
\r
ight) R_{23} e^{2 i k_2 d}}
{1 + R_{12} R_{23} e^{2 i k_2 d}}
\\
&= E^+
\f
rac{R_{12} + R_{23} e^{2 i k_2 d}} {1 + R_{12} R_{23} e^{2 i k_2 d}}
\e
nd{align
*
}
$$
The last line follows since
$$
\b
egin{align
*
}
R_{12}^2 + T_{12} T_{21}
&=
\f
rac{(n_1 - n_2)^2}{(n_1 + n_2)^2} +
\f
rac{2 n_1}{n_1 + n_2}
\f
rac{2 n_2}{n_1 + n_2}
\\
&=
\f
rac{(n_1 - n_2)^2 + 4 n_1 n_2}{(n_1 + n_2)^2}
\\
&=
\f
rac{n_1^2 - 2 n_1 n_2 + n_2^2 + 4 n_1 n_2}{(n_1 + n_2)^2}
\\
&=
\f
rac{(n_1 + n_2)^2}{(n_1 + n_2)^2}
\\
&= 1
\e
nd{align
*
}
$$
So the total reflectivity in terms of power is
$$
\b
egin{align
*
}
R &=
\f
rac{(E^-)^2}{(E^+)^2}
\\
&=
\f
rac{(R_{12} + R_{23} e^{2 i k_2 d})^2}{(1 + R_{12} R_{23} e^{2 i k_2 d})^2}
\e
nd{align
*
}
$$
### (b)
### (b)
{:.question}
{:.question}
Can you find values for $$n_2$$ and $$d$$ such that the reflection vanishes?
Can you find values for $$n_2$$ and $$d$$ such that the reflection vanishes?
To make $$R = 0$$ we need $$R_{12} = -R_{23} e^{2 i k_2 d}$$. Since $$R_{12}$$ is a positive real
number, the only way this can work is if $$e^{2 i k_2 d} = -1$$ and $$R_{12} = R_{23}$$. (Consider
that $$e^{2 i k_2 d}$$ lies on the complex unit circle. So to be real it has to be 1 or -1, and 1
would leave us with a negative number.) Thus $$2 k_2 d =
\p
i$$, or
$$
d =
\f
rac{
\p
i}{2 k_2} =
\f
rac{
\l
ambda}{4}
$$
since $$k_2 = 2
\p
i /
\l
ambda$$. And $$R_{12} = R_{23}$$ implies
$$
\b
egin{align
*
}
\f
rac{n_1 - n_2}{n_1 + n_2} &=
\f
rac{n_2 - n_3}{n_2 + n_3}
\\
(n_1 - n_2) (n_2 + n_3) &= (n_1 + n_2) (n_2 - n_3)
\\
n_1 n_2 + n_1 n_3 - n_2^2 - n_2 n_3 &= n_1 n_2 - n_1 n_3 + n_2^2 - n_2 n_3
\\
n_2^2 &= n_1 n_3
\\
n_2 &=
\s
qrt{n_1 n_3}
\\
\e
nd{align
*
}
$$
## (9.4)
## (9.4)
...
@@ -255,6 +347,73 @@ Consider a ray starting with a height $$r_0$$ and some slope, a distance $$d_1$$
...
@@ -255,6 +347,73 @@ Consider a ray starting with a height $$r_0$$ and some slope, a distance $$d_1$$
lens with focal length $$f$$. Use ray matrices to find the image plane where all rays starting at
lens with focal length $$f$$. Use ray matrices to find the image plane where all rays starting at
this point rejoin, and discuss the magnification of the height $$r_0$$.
this point rejoin, and discuss the magnification of the height $$r_0$$.
$$
\b
egin{align
*
}
M &=
\b
egin{bmatrix}
1 & d_2
\\
0 & 1
\e
nd{bmatrix}
\b
egin{bmatrix}
1 & 0
\\
-1/f & 1
\e
nd{bmatrix}
\b
egin{bmatrix}
1 & d_1
\\
0 & 1
\e
nd{bmatrix}
\\
&=
\b
egin{bmatrix}
1 & d_2
\\
0 & 1
\e
nd{bmatrix}
\b
egin{bmatrix}
1 & d_1
\\
-1/f & -d_1/f + 1
\e
nd{bmatrix}
\\
&=
\b
egin{bmatrix}
1 - d_2/f & d_1 + d_2 - d_1 d_2/f
\\
-1/f & 1 - d_1/f
\e
nd{bmatrix}
\e
nd{align
*
}
$$
So
$$
M
\b
egin{bmatrix}
r_0
\\
s_0
\e
nd{bmatrix}
=
\b
egin{bmatrix}
r_0 (1 - d_2/f) + s_0 (d_1 + d_2 - d_1 d_2/f)
\\
-r_0/f + s_0 (1 - d_1/f)
\e
nd{bmatrix}
$$
The position (i.e. 0th element) doesn't depend on $$s_0$$ if
$$
d_1 + d_2 -
\f
rac{d_1 d_2}{f} = 0
$$
i.e.
$$
\f
rac{1}{d_1} +
\f
rac{1}{d_2} =
\f
rac{1}{f}
$$
Note that this doesn't depend on $$r_0$$, so there really is a focal plane.
At the $$d_2$$ satisfying the relation above, each light ray's position is $$r_0 (1 - d_2/f)$$. So
the whole plane is stretched by a factor of $$1 - d_2 / f$$.
## (9.5)
## (9.5)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment