Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pit
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Erik Strand
pit
Commits
1ceca2f3
Commit
1ceca2f3
authored
6 years ago
by
Erik Strand
Browse files
Options
Downloads
Patches
Plain Diff
Answer 9.2
parent
a66b09d2
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
_psets/7.md
+157
-0
157 additions, 0 deletions
_psets/7.md
with
157 additions
and
0 deletions
_psets/7.md
+
157
−
0
View file @
1ceca2f3
...
...
@@ -57,21 +57,178 @@ $$
Use Fresnel’s equations and the Poynting vectors to find the reflectivity and transmissivity of a
dielectric interface, defined by the ratios of incoming and outgoing energy.
First note that
$$
\b
egin{align
*
}
\s
qrt{
\f
rac{
\e
psilon}{
\m
u}}
&=
\s
qrt{
\f
rac{
\e
psilon_0
\e
psilon_r}{
\m
u_0
\m
u_r}}
\\
&=
\s
qrt{
\f
rac{
\e
psilon_0}{
\m
u_0}}
\f
rac{n}{
\m
u_r}
\\
&
\a
pprox
\s
qrt{
\f
rac{
\e
psilon_0}{
\m
u_0}} n
\e
nd{align
*
}
$$
since most dielectric materials have $$
\m
u_r
\a
pprox 1$$.
So for a plane wave in a homogeneous medium,
$$
\b
egin{align
*
}
P &= E
\t
imes H
\\
&= E
\t
imes
\l
eft(
\s
qrt{
\f
rac{
\e
psilon}{
\m
u}}
\h
at{k}
\t
imes E
\r
ight)
\e
nd{align
*
}
$$
and
$$
\b
egin{align
*
}
\l
angle | P |
\r
angle
&=
\f
rac{1}{2}
\s
qrt{
\f
rac{
\e
psilon}{
\m
u}} E_
\t
ext{max}^2
\\
&
\a
pprox
\f
rac{n}{2}
\s
qrt{
\f
rac{
\e
psilon_0}{
\m
u_0}} E_
\t
ext{max}^2
\e
nd{align
*
}
$$
There are two cases to consider. First, when the electric field is perpendicular to the plane of
incidence, the reflected and refracted electric fields will be (respectively)
$$
\b
egin{align
*
}
E_1 &=
\f
rac{
\s
in(
\t
heta_2 -
\t
heta_0)}{
\s
in(
\t
heta_2 +
\t
heta_0)} E_0
\\
E_2 &=
\f
rac{2
\c
os
\t
heta_0
\s
in
\t
heta_2}{
\s
in(
\t
heta_0 +
\t
heta_2)} E_0
\e
nd{align
*
}
$$
So the reflectivity is
$$
\b
egin{align
*
}
R &=
\f
rac{E_1^2}{E_0^2}
\\
&=
\f
rac{
\s
in^2(
\t
heta_2 -
\t
heta_0)}{
\s
in^2(
\t
heta_2 +
\t
heta_0)}
\e
nd{align
*
}
$$
and the transmissivity
$$
\b
egin{align
*
}
T &=
\f
rac{E_2^2}{E_0^2}
\\
&=
\f
rac{n_2}{n_1}
\f
rac{4
\c
os^2
\t
heta_0
\s
in^2
\t
heta_2}{
\s
in^2(
\t
heta_0 +
\t
heta_2)}
\e
nd{align
*
}
$$
When the electric field is in the plane of incidence,
$$
\b
egin{align
*
}
E_1 &=
\f
rac{
\t
an(
\t
heta_0 -
\t
heta_2)}{
\t
an(
\t
heta_0 +
\t
heta_2)} E_0
\\
E_2 &=
\f
rac{2
\c
os
\t
heta_0
\s
in
\t
heta_2}{
\s
in(
\t
heta_0 +
\t
heta_2)
\c
os(
\t
heta_0 -
\t
heta_2)} E_0
\e
nd{align
*
}
$$
so
$$
\b
egin{align
*
}
R &=
\f
rac{
\t
an^2(
\t
heta_0 -
\t
heta_2)}{
\t
an^2(
\t
heta_0 +
\t
heta_2)}
\\
T &=
\f
rac{n_2}{n_1}
\f
rac{4
\c
os^2
\t
heta_0
\s
in^2
\t
heta_2}{
\s
in^2(
\t
heta_0 +
\t
heta_2)
\c
os^2(
\t
heta_0 -
\t
heta_2)}
\e
nd{align
*
}
$$
When the electric field has components out of and in the plane of incidence, the total reflectivity
and transmissivity can be found via adding the values above in quadrature.
### (b)
{:.question}
For a glass–air interface (n = 1.5) what is the reflectivity at normal incidence?
At normal incidence, there is no unique plane of incidence. So by symmetry it shouldn't matter which
reflection coefficients we use. Let's choose the perpendicular case. We would like to evaluate
$$
R =
\f
rac{
\s
in^2(
\t
heta_2 -
\t
heta_0)}{
\s
in^2(
\t
heta_2 +
\t
heta_0)}
$$
for $$
\t
heta =
\t
heta_2 = 0$$. But this formula diverges, so instead we will compute its limit as
$$
\t
heta_0$$ and $$
\t
heta_2$$ approach zero.
As they approach zero we must still respect Snell's Law: $$n_1 / n_2 =
\s
in
\t
heta_2 /
\s
in
\t
heta_0$$. Since we are interested in the limit, the small angle approximation is in this case not
an approximation at all. So we can write this as
$$
\f
rac{n_1}{n_2} =
\f
rac{
\t
heta_2}{
\t
heta_0}
$$
or
$$
\t
heta_2 =
\f
rac{
\t
heta_0 n_1}{n_2}
$$
Thus the reflectivity is
$$
\b
egin{align
*
}
R
&=
\l
im_{
\t
heta_0
\t
o 0}
\f
rac{
\s
in^2
\l
eft(
\t
heta_0
\l
eft(
\f
rac{n_1}{n_2} - 1
\r
ight)
\r
ight)}
{
\s
in^2
\l
eft(
\t
heta_0
\l
eft(
\f
rac{n_1}{n_2} + 1
\r
ight)
\r
ight)}
\\
&=
\l
im_{
\t
heta_0
\t
o 0}
\f
rac{
\t
heta_0^2
\l
eft(
\f
rac{n_1}{n_2} - 1
\r
ight)^2}
{
\t
heta_0^2
\l
eft(
\f
rac{n_1}{n_2} + 1
\r
ight)^2}
\\
&=
\f
rac{
\l
eft(
\f
rac{n_1}{n_2} - 1
\r
ight)^2}{
\l
eft(
\f
rac{n_1}{n_2} + 1
\r
ight)^2}
\\
&=
\f
rac{
\l
eft( n_1 - n_2
\r
ight)^2}{
\l
eft( n_1 + n_2
\r
ight)^2}
\e
nd{align
*
}
$$
For an air to glass interface,
$$
\b
egin{align
*
}
R &=
\f
rac{
\l
eft( 1 - 1.5
\r
ight)^2}{
\l
eft( 1 + 1.5
\r
ight)^2}
\\
&= 0.04
\e
nd{align
*
}
$$
### (c)
{:.question}
What is the Brewster angle?
$$
\t
heta_B =
\t
an^{-1}
\l
eft(
\f
rac{n_2}{n_1}
\r
ight)
$$
So for air to glass,
$$
\t
heta_B =
\t
an^{-1}
\l
eft(
\f
rac{1.5}{1}
\r
ight) = 0.98
\s
i{rad} = 56.3^
\c
irc
$$
and for glass to air,
$$
\t
heta_B =
\t
an^{-1}
\l
eft(
\f
rac{1}{1.5}
\r
ight) = 0.58
\s
i{rad} = 33.7^
\c
irc
$$
### (d)
{:.question}
What is the critical angle?
$$
\b
egin{align
*
}
\t
heta_C &=
\s
in^{-1}
\l
eft(
\f
rac{n_2}{n_1}
\r
ight)
\\
&=
\s
in^{-1}
\l
eft(
\f
rac{1}{1.5}
\r
ight)
\\
&= 0.73
\s
i{rad}
\\
&= 41.8^
\c
irc
\e
nd{align
*
}
$$
for glass to air. There isn't a critical angle for air to glass, since it requires $$n_2
\l
eq n_1$$.
## (9.3)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment