diff --git a/_psets/7.md b/_psets/7.md index bd383a139499663f3526d0368eccb3ad9b768580..d116708025cdbf560d6871585d362c6e43963e96 100644 --- a/_psets/7.md +++ b/_psets/7.md @@ -242,11 +242,103 @@ between layers with indices $$n_1$$ and $$n_3$$. What is the reflectivity? Think about matching the boundary conditions, or about the multiple reflections. +Using Snell's Law and the small angle "approximation" as in the previous problem, we can find the +the coefficients of reflection and transmission (this time for field strength instead of power, for +reasons that will become clear). For this problem it's important to keep track of the direction in +which light crosses (or reflects from) the dielectric barriers, so I'll use subscripts throughout. + +$$ +\begin{align*} +R_{12} +&= \lim_{\theta_0 \to 0} \frac{\sin \left( \theta_0 \left( \frac{n_1}{n_2} - 1 \right) \right)} + {\sin \left( \theta_0 \left( \frac{n_1}{n_2} + 1 \right) \right)} \\ +&= \lim_{\theta_0 \to 0} \frac{\theta_0 \left( \frac{n_1}{n_2} - 1 \right)} + {\theta_0 \left( \frac{n_1}{n_2} + 1 \right)} \\ +&= \frac{\left( \frac{n_1}{n_2} - 1 \right)}{\left( \frac{n_1}{n_2} + 1 \right)} \\ +&= \frac{n_1 - n_2}{n_1 + n_2} \\ + +T_{12} +&= \lim_{\theta_0 \to 0} \frac{2 \sin \left( \theta_0 \frac{n_1}{n_2} \right) \cos \theta_0} + {\sin \left( \theta_0 \left( \frac{n_1}{n_2} + 1 \right) \right)} \\ +&= \lim_{\theta_0 \to 0} \frac{2 \theta_0 \frac{n_1}{n_2}} + {\theta_0 \left( \frac{n_1}{n_2} + 1 \right)} \\ +&= \frac{2 \frac{n_1}{n_2}}{\left( \frac{n_1}{n_2} + 1 \right)} \\ +&= \frac{2 n_1}{n_1 + n_2} +\end{align*} +$$ + +Note that $$R_{12} = -R_{21}$$. We'll use this later. + +Now the reflections can be modeled as an infinite sum, taking into account the phase shift that +results from travel through the middle medium. + +$$ +\begin{align*} +E^- +&= E^+ R_{12} + E^+ T_{12} R_{23} T_{21} e^{2 i k_2 d} + + E^+ T_{12} R_{23}^2 T_{21} R_{21} e^{4 i k_2 d} \\ +&= E^+ R_{12} + E^+ T_{12} R_{23} T_{21} e^{2 i k_2 d} + \sum_{n = 0}^\infty \left( R_{21} R_{23} e^{2 i k_2 d} \right)^n \\ +&= E^+ R_{12} + \frac{E^+ T_{12} R_{23} T_{21} e^{2 i k_2 d}} + {1 - R_{21} R_{23} e^{2 i k_2 d}} \\ +&= \frac{E^+ R_{12} \left( 1 - R_{21} R_{23} e^{2 i k_2 d} \right) + + E^+ T_{12} R_{23} T_{21} e^{2 i k_2 d}} {1 - R_{21} R_{23} e^{2 i k_2 d}} \\ +&= E^+ \frac{R_{12} \left( 1 + R_{12} R_{23} e^{2 i k_2 d} \right) + + T_{12} R_{23} T_{21} e^{2 i k_2 d}} {1 + R_{12} R_{23} e^{2 i k_2 d}} \\ +&= E^+ \frac{R_{12} + \left( R_{12}^2 + T_{12} T_{21} \right) R_{23} e^{2 i k_2 d}} + {1 + R_{12} R_{23} e^{2 i k_2 d}} \\ +&= E^+ \frac{R_{12} + R_{23} e^{2 i k_2 d}} {1 + R_{12} R_{23} e^{2 i k_2 d}} +\end{align*} +$$ + +The last line follows since + +$$ +\begin{align*} +R_{12}^2 + T_{12} T_{21} +&= \frac{(n_1 - n_2)^2}{(n_1 + n_2)^2} + \frac{2 n_1}{n_1 + n_2} \frac{2 n_2}{n_1 + n_2} \\ +&= \frac{(n_1 - n_2)^2 + 4 n_1 n_2}{(n_1 + n_2)^2} \\ +&= \frac{n_1^2 - 2 n_1 n_2 + n_2^2 + 4 n_1 n_2}{(n_1 + n_2)^2} \\ +&= \frac{(n_1 + n_2)^2}{(n_1 + n_2)^2} \\ +&= 1 +\end{align*} +$$ + +So the total reflectivity in terms of power is + +$$ +\begin{align*} +R &= \frac{(E^-)^2}{(E^+)^2} \\ +&= \frac{(R_{12} + R_{23} e^{2 i k_2 d})^2}{(1 + R_{12} R_{23} e^{2 i k_2 d})^2} +\end{align*} +$$ + ### (b) {:.question} Can you find values for $$n_2$$ and $$d$$ such that the reflection vanishes? +To make $$R = 0$$ we need $$R_{12} = -R_{23} e^{2 i k_2 d}$$. Since $$R_{12}$$ is a positive real +number, the only way this can work is if $$e^{2 i k_2 d} = -1$$ and $$R_{12} = R_{23}$$. (Consider +that $$e^{2 i k_2 d}$$ lies on the complex unit circle. So to be real it has to be 1 or -1, and 1 +would leave us with a negative number.) Thus $$2 k_2 d = \pi$$, or + +$$ +d = \frac{\pi}{2 k_2} = \frac{\lambda}{4} +$$ + +since $$k_2 = 2 \pi / \lambda$$. And $$R_{12} = R_{23}$$ implies + +$$ +\begin{align*} +\frac{n_1 - n_2}{n_1 + n_2} &= \frac{n_2 - n_3}{n_2 + n_3} \\ +(n_1 - n_2) (n_2 + n_3) &= (n_1 + n_2) (n_2 - n_3) \\ +n_1 n_2 + n_1 n_3 - n_2^2 - n_2 n_3 &= n_1 n_2 - n_1 n_3 + n_2^2 - n_2 n_3 \\ +n_2^2 &= n_1 n_3 \\ +n_2 &= \sqrt{n_1 n_3} \\ +\end{align*} +$$ + ## (9.4) @@ -255,6 +347,73 @@ Consider a ray starting with a height $$r_0$$ and some slope, a distance $$d_1$$ lens with focal length $$f$$. Use ray matrices to find the image plane where all rays starting at this point rejoin, and discuss the magnification of the height $$r_0$$. +$$ +\begin{align*} +M &= +\begin{bmatrix} +1 & d_2 \\ +0 & 1 +\end{bmatrix} +\begin{bmatrix} +1 & 0 \\ +-1/f & 1 +\end{bmatrix} +\begin{bmatrix} +1 & d_1 \\ +0 & 1 +\end{bmatrix} +\\ + +&= +\begin{bmatrix} +1 & d_2 \\ +0 & 1 +\end{bmatrix} +\begin{bmatrix} +1 & d_1 \\ +-1/f & -d_1/f + 1 +\end{bmatrix} +\\ + +&= +\begin{bmatrix} +1 - d_2/f & d_1 + d_2 - d_1 d_2/f \\ +-1/f & 1 - d_1/f +\end{bmatrix} +\end{align*} +$$ + +So + +$$ +M +\begin{bmatrix} +r_0 \\ s_0 +\end{bmatrix} += +\begin{bmatrix} +r_0 (1 - d_2/f) + s_0 (d_1 + d_2 - d_1 d_2/f) \\ +-r_0/f + s_0 (1 - d_1/f) +\end{bmatrix} +$$ + +The position (i.e. 0th element) doesn't depend on $$s_0$$ if + +$$ +d_1 + d_2 - \frac{d_1 d_2}{f} = 0 +$$ + +i.e. + +$$ +\frac{1}{d_1} + \frac{1}{d_2} = \frac{1}{f} +$$ + +Note that this doesn't depend on $$r_0$$, so there really is a focal plane. + +At the $$d_2$$ satisfying the relation above, each light ray's position is $$r_0 (1 - d_2/f)$$. So +the whole plane is stretched by a factor of $$1 - d_2 / f$$. + ## (9.5)