Skip to content
Snippets Groups Projects
Commit e150ff19 authored by Erik Strand's avatar Erik Strand
Browse files

Add 3.4 (f)

parent b9ca7a39
Branches
No related tags found
No related merge requests found
...@@ -416,9 +416,16 @@ $$ ...@@ -416,9 +416,16 @@ $$
So our result above for $$p(\tau)$$ follows because $$E = k T \log(\tau / \tau_0)$$, so $$dE / d\tau So our result above for $$p(\tau)$$ follows because $$E = k T \log(\tau / \tau_0)$$, so $$dE / d\tau
= k T / \tau$$. = k T / \tau$$.
Now we must show that $$S(f) \propto 1/f$$.
$$ $$
\begin{align*} \begin{align*}
S(f) &= \int_0^\infty p(\tau) \frac{2 \tau}{1 + (2 \pi f \tau)^2} \mathrm{d} \tau \\
&= \int_0^\infty \frac{2 p(E) k T}{1 + (2 \pi f \tau)^2} \mathrm{d} \tau \\
&= \frac{1}{2 \pi f} \int_0^\infty \frac{2 p(E) k T}{1 + \tau^2} \mathrm{d} \tau \\
&= \frac{p(E) k T}{\pi f} \int_0^\infty \frac{1}{1 + \tau^2} \mathrm{d} \tau \\
&= \frac{p(E) k T}{\pi f} \int_0^{\pi/2} \frac{sec^2{\theta}}{1 + tan^2(\theta)} \mathrm{d} \theta \\
&= \frac{p(E) k T}{\pi f} \int_0^{\pi/2} \mathrm{d} \theta \\
&= \frac{p(E) k T}{2 f}
\end{align*} \end{align*}
$$ $$
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment