From e150ff1954e842fe95d437a1cb8a9686670e963b Mon Sep 17 00:00:00 2001 From: Erik Strand <erik.strand@cba.mit.edu> Date: Thu, 21 Feb 2019 02:46:40 -0500 Subject: [PATCH] Add 3.4 (f) --- _psets/2.md | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/_psets/2.md b/_psets/2.md index 90ad9f8..c2ca630 100644 --- a/_psets/2.md +++ b/_psets/2.md @@ -416,9 +416,16 @@ $$ So our result above for $$p(\tau)$$ follows because $$E = k T \log(\tau / \tau_0)$$, so $$dE / d\tau = k T / \tau$$. - +Now we must show that $$S(f) \propto 1/f$$. $$ \begin{align*} +S(f) &= \int_0^\infty p(\tau) \frac{2 \tau}{1 + (2 \pi f \tau)^2} \mathrm{d} \tau \\ +&= \int_0^\infty \frac{2 p(E) k T}{1 + (2 \pi f \tau)^2} \mathrm{d} \tau \\ +&= \frac{1}{2 \pi f} \int_0^\infty \frac{2 p(E) k T}{1 + \tau^2} \mathrm{d} \tau \\ +&= \frac{p(E) k T}{\pi f} \int_0^\infty \frac{1}{1 + \tau^2} \mathrm{d} \tau \\ +&= \frac{p(E) k T}{\pi f} \int_0^{\pi/2} \frac{sec^2{\theta}}{1 + tan^2(\theta)} \mathrm{d} \theta \\ +&= \frac{p(E) k T}{\pi f} \int_0^{\pi/2} \mathrm{d} \theta \\ +&= \frac{p(E) k T}{2 f} \end{align*} $$ -- GitLab