Skip to content
Snippets Groups Projects
Commit c08cff42 authored by Erik Strand's avatar Erik Strand
Browse files

Proofreading

parent 99ff4988
No related branches found
No related tags found
No related merge requests found
......@@ -147,7 +147,7 @@ $$
\begin{align*}
E_\text{max} &= \left( 2 \sqrt{\frac{\mu_0}{\epsilon_0}} \langle P \rangle \right)^\frac{1}{2} \\
&= \sqrt{2 \cdot 377 \si{\ohm} \cdot \num{8e-5} \si{W/m^2}} \\
&= 0.24 \si{W/m}
&= 0.24 \si{V/m}
\end{align*}
$$
......@@ -161,13 +161,16 @@ By Ohm's Law $$V = I (R_r + R_l)$$ (where $$R_r$$ is the radiation resistance, a
resistance). Thus $$I = V / (R_r + R_l)$$ and the power dissipated in the load resistance is
$$
P = I^2 R = \frac{V^2 R_l}{(R_r + R_l)^2}
\begin{align*}
P &= I^2 R \\
&= \frac{V^2 R_l}{(R_r + R_l)^2}
\end{align*}
$$
This is maximized where its derivative is zero.
To maximize this we take the derivative
$$
\frac{d P}{d R_l} V^2 ( (R_r + R_l)^{-2} - 2 R_l (R_r + R_l)^{-3} )
\frac{d P}{d R_l} = V^2 ( (R_r + R_l)^{-2} - 2 R_l (R_r + R_l)^{-3} )
$$
Setting this to zero implies $$R_r + R_l = 2 R_l$$, or
......@@ -226,7 +229,7 @@ $$
A &= \frac{V^2}{4 R} \sqrt{\frac{\mu_0}{\epsilon_0}} \frac{1}{E^2_\text{max}} \\
&= \frac{V^2}{4} \sqrt{\frac{\mu_0}{\epsilon_0}} \frac{1}{E^2_\text{max}}
\frac{3}{2 \pi} \sqrt{\frac{\epsilon_0}{\mu_0}} \left( \frac{\lambda}{d} \right)^2 \\
&= \frac{3}{8} \frac{V^2}{E^2_\text{max}} \left( \frac{\lambda}{d} \right)^2
&= \frac{3}{8 \pi} \frac{V^2}{E^2_\text{max}} \left( \frac{\lambda}{d} \right)^2
\end{align*}
$$
......@@ -239,9 +242,18 @@ $$
Now we need to relate the voltage and the maximum magnitude of the electric field. The whole point
of the antenna is to pick up oscillating electric and magnetic fields, and the presence of the
latter makes voltage path dependent. So let's integrate along our (infinitely thin) antenna. Our
antenna has an infinitesimal length $$d$$, so the field will be constant across it. Thus $$d$$, $$V
= E_\text{max} d$$. As such
antenna has an infinitesimal length $$d$$, so the field will be constant across it. Thus the
integral is just $$d$$ times the electric field, i.e. $$V = E_\text{max} d$$. As such
$$
A = \frac{3}{8 \pi} \lambda^2
$$
Finally we see that the area gain ratio is
$$
A = \frac{3}{8} \lambda^2
\begin{align*}
\frac{A}{G} &= \frac{3}{8 \pi} \lambda^2 \frac{2}{3} \\
&= \frac{1}{4 \pi} \lambda^2
\end{align*}
$$
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment