From c08cff42cd308174ea37f8e938c8ddb50a0c6b3c Mon Sep 17 00:00:00 2001 From: Erik Strand <erik.strand@cba.mit.edu> Date: Thu, 21 Mar 2019 18:14:16 -0400 Subject: [PATCH] Proofreading --- _psets/6.md | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-) diff --git a/_psets/6.md b/_psets/6.md index e2a2ada..1574523 100644 --- a/_psets/6.md +++ b/_psets/6.md @@ -147,7 +147,7 @@ $$ \begin{align*} E_\text{max} &= \left( 2 \sqrt{\frac{\mu_0}{\epsilon_0}} \langle P \rangle \right)^\frac{1}{2} \\ &= \sqrt{2 \cdot 377 \si{\ohm} \cdot \num{8e-5} \si{W/m^2}} \\ -&= 0.24 \si{W/m} +&= 0.24 \si{V/m} \end{align*} $$ @@ -161,13 +161,16 @@ By Ohm's Law $$V = I (R_r + R_l)$$ (where $$R_r$$ is the radiation resistance, a resistance). Thus $$I = V / (R_r + R_l)$$ and the power dissipated in the load resistance is $$ -P = I^2 R = \frac{V^2 R_l}{(R_r + R_l)^2} +\begin{align*} +P &= I^2 R \\ +&= \frac{V^2 R_l}{(R_r + R_l)^2} +\end{align*} $$ -This is maximized where its derivative is zero. +To maximize this we take the derivative $$ -\frac{d P}{d R_l} V^2 ( (R_r + R_l)^{-2} - 2 R_l (R_r + R_l)^{-3} ) +\frac{d P}{d R_l} = V^2 ( (R_r + R_l)^{-2} - 2 R_l (R_r + R_l)^{-3} ) $$ Setting this to zero implies $$R_r + R_l = 2 R_l$$, or @@ -226,7 +229,7 @@ $$ A &= \frac{V^2}{4 R} \sqrt{\frac{\mu_0}{\epsilon_0}} \frac{1}{E^2_\text{max}} \\ &= \frac{V^2}{4} \sqrt{\frac{\mu_0}{\epsilon_0}} \frac{1}{E^2_\text{max}} \frac{3}{2 \pi} \sqrt{\frac{\epsilon_0}{\mu_0}} \left( \frac{\lambda}{d} \right)^2 \\ -&= \frac{3}{8} \frac{V^2}{E^2_\text{max}} \left( \frac{\lambda}{d} \right)^2 +&= \frac{3}{8 \pi} \frac{V^2}{E^2_\text{max}} \left( \frac{\lambda}{d} \right)^2 \end{align*} $$ @@ -239,9 +242,18 @@ $$ Now we need to relate the voltage and the maximum magnitude of the electric field. The whole point of the antenna is to pick up oscillating electric and magnetic fields, and the presence of the latter makes voltage path dependent. So let's integrate along our (infinitely thin) antenna. Our -antenna has an infinitesimal length $$d$$, so the field will be constant across it. Thus $$d$$, $$V -= E_\text{max} d$$. As such +antenna has an infinitesimal length $$d$$, so the field will be constant across it. Thus the +integral is just $$d$$ times the electric field, i.e. $$V = E_\text{max} d$$. As such + +$$ +A = \frac{3}{8 \pi} \lambda^2 +$$ + +Finally we see that the area gain ratio is $$ -A = \frac{3}{8} \lambda^2 +\begin{align*} +\frac{A}{G} &= \frac{3}{8 \pi} \lambda^2 \frac{2}{3} \\ +&= \frac{1}{4 \pi} \lambda^2 +\end{align*} $$ -- GitLab