Skip to content
Snippets Groups Projects
Commit 7f878360 authored by Erik Strand's avatar Erik Strand
Browse files

Use different variables

parent 3e38b018
Branches
No related tags found
No related merge requests found
...@@ -21,18 +21,18 @@ $$ ...@@ -21,18 +21,18 @@ $$
Meanwhile, the Fourier transform of $$f$$ is Meanwhile, the Fourier transform of $$f$$ is
$$ $$
\hat{f}(\hat{x}, \hat{y}) \hat{f}(u, v)
= \int_\mathbb{R} \int_\mathbb{R} f(x, y) e^{-2 \pi i (\hat{x} x + \hat{y} y)} dx dy = \int_\mathbb{R} \int_\mathbb{R} f(x, y) e^{-2 \pi i (u x + v y)} dx dy
$$ $$
Note that the slice along the $$\hat{x}$$ axis in frequency space is described by Note that the slice along the $$u$$ axis in frequency space is described by
$$ $$
\begin{align*} \begin{align*}
\hat{f}(\hat{x}, 0) \hat{f}(u, 0)
&= \int_\mathbb{R} \int_\mathbb{R} f(x, y) e^{-2 \pi i \hat{x} x} dx dy \\ &= \int_\mathbb{R} \int_\mathbb{R} f(x, y) e^{-2 \pi i u x} dx dy \\
&= \int_\mathbb{R} \left( \int_\mathbb{R} f(x, y) dy \right) e^{-2 \pi i \hat{x} x} dx \\ &= \int_\mathbb{R} \left( \int_\mathbb{R} f(x, y) dy \right) e^{-2 \pi i u x} dx \\
&= \int_\mathbb{R} p(x) e^{-2 \pi i \hat{x} x} dx \\ &= \int_\mathbb{R} p(x) e^{-2 \pi i u x} dx \\
&= \hat{p}(\hat{x}) &= \hat{p}(u)
\end{align*} \end{align*}
$$ $$
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment