From 7f8783603a3fa55d11f6343cd876477231b8f31d Mon Sep 17 00:00:00 2001 From: Erik Strand <erik.strand@cba.mit.edu> Date: Tue, 30 Apr 2019 16:37:29 -0400 Subject: [PATCH] Use different variables --- project.md | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/project.md b/project.md index ccd904f..fdb1a63 100644 --- a/project.md +++ b/project.md @@ -21,18 +21,18 @@ $$ Meanwhile, the Fourier transform of $$f$$ is $$ -\hat{f}(\hat{x}, \hat{y}) -= \int_\mathbb{R} \int_\mathbb{R} f(x, y) e^{-2 \pi i (\hat{x} x + \hat{y} y)} dx dy +\hat{f}(u, v) += \int_\mathbb{R} \int_\mathbb{R} f(x, y) e^{-2 \pi i (u x + v y)} dx dy $$ -Note that the slice along the $$\hat{x}$$ axis in frequency space is described by +Note that the slice along the $$u$$ axis in frequency space is described by $$ \begin{align*} -\hat{f}(\hat{x}, 0) -&= \int_\mathbb{R} \int_\mathbb{R} f(x, y) e^{-2 \pi i \hat{x} x} dx dy \\ -&= \int_\mathbb{R} \left( \int_\mathbb{R} f(x, y) dy \right) e^{-2 \pi i \hat{x} x} dx \\ -&= \int_\mathbb{R} p(x) e^{-2 \pi i \hat{x} x} dx \\ -&= \hat{p}(\hat{x}) +\hat{f}(u, 0) +&= \int_\mathbb{R} \int_\mathbb{R} f(x, y) e^{-2 \pi i u x} dx dy \\ +&= \int_\mathbb{R} \left( \int_\mathbb{R} f(x, y) dy \right) e^{-2 \pi i u x} dx \\ +&= \int_\mathbb{R} p(x) e^{-2 \pi i u x} dx \\ +&= \hat{p}(u) \end{align*} $$ -- GitLab