Newer
Older
//
// cudapi.cu
// Neil Gershenfeld 3/1/20
// calculation of pi by a CUDA sum
// pi = 3.14159265358979323846
//
#include <iostream>
#include <chrono>
uint64_t blocks = 1024;
uint64_t threads = 1024;
uint64_t nloop = 1000000;
uint64_t npts = blocks*threads;
cudaError err;
err = cudaGetLastError();
if (cudaSuccess != err)
cerr << msg << ": " << cudaGetErrorString(err) << endl;
}
__global__ void init(double *arr,uint64_t nloop) {
uint64_t i = blockIdx.x*blockDim.x+threadIdx.x;
uint64_t start = nloop*i+1;
uint64_t end = nloop*(i+1)+1;
arr[i] = 0;
for (uint64_t j = start; j < end; ++j)
arr[i] += 0.5/((j-0.75)*(j-0.25));
}
__global__ void reduce_sum(double *arr,uint64_t len) {
uint64_t i = blockIdx.x*blockDim.x+threadIdx.x;
if (i < len)
arr[i] += arr[i+len];
}
void reduce(double *arr) {
uint64_t len = npts >> 1;
while (1) {
reduce_sum<<<blocks,threads>>>(arr,len);
int main(void) {
double harr[1],*darr;
cudaMalloc(&darr,npts*sizeof(double));
auto tstart = std::chrono::high_resolution_clock::now();
init<<<blocks,threads>>>(darr,nloop);
auto tend = std::chrono::high_resolution_clock::now();
auto dt = std::chrono::duration_cast<std::chrono::microseconds>(tend-tstart).count();
auto mflops = npts*nloop*5.0/dt;
cudaMemcpy(harr,darr,8,cudaMemcpyDeviceToHost);