Newer
Older
//
//
// serial_button.c
//
// 115200 baud FTDI connection that outputs '0' or '1' depending
// on the state of a physical button
//
// set lfuse to 0x5E for 20 MHz xtal
//
// Neil Gershenfeld
// 12/8/10
// Erik Strand
// 11/26/2018
//
#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#define output(directions,pin) (directions |= pin) // set port direction for output
#define set(port,pin) (port |= pin) // set port pin
#define clear(port,pin) (port &= (~pin)) // clear port pin
#define pin_test(pins,pin) (pins & pin) // test for port pin
#define bit_test(byte,bit) (byte & (1 << bit)) // test for bit set
#define bit_delay_time 8.5 // bit delay for 115200 with overhead
#define bit_delay() _delay_us(bit_delay_time) // RS232 bit delay
#define half_bit_delay() _delay_us(bit_delay_time/2) // RS232 half bit delay
#define char_delay() _delay_ms(10) // char delay
#define delay(duration) _delay_ms(duration); // drop-in replacement for Arduino delay
#define serial_port PORTA
#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
#define led_pin (1 << PB2)
#define button_pin (1 << PA7)
#define max_buffer 25
void put_char(volatile unsigned char *port, unsigned char pin, char txchar) {
//
// send character in txchar on port pin
// assumes line driver (inverts bits)
//
// start bit
//
clear(*port,pin);
bit_delay();
//
// unrolled loop to write data bits
//
if bit_test(txchar,0)
bit_delay();
//
// stop bit
//
set(*port,pin);
bit_delay();
//
// char delay
//
bit_delay();
}
void put_string(volatile unsigned char *port, unsigned char pin, char *str) {
//
// print a null-terminated string
//
static int index;
index = 0;
do {
put_char(port, pin, str[index]);
++index;
} while (str[index] != 0);
}
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
OneWire ds(11); // on pin 10 (a 4.7K resistor is necessary)
//void setup(void) {
// Serial.begin(9600);
//}
void loop(void) {
byte i;
byte present = 0;
byte type_s;
byte data[12];
byte addr[8];
float celsius, fahrenheit;
if ( !ds.search(addr)) {
put_string(&serial_port, serial_pin_out, "No more addresses.");
ds.reset_search();
delay(250);
return;
}
//Serial.print("ROM =");
put_string(&serial_port, serial_pin_out, "ROM=");
for( i = 0; i < 8; i++) {
put_char(&serial_port, serial_pin_out, ' ');
//Serial.print(addr[i], HEX);
put_string(&serial_port, serial_pin_out, "xxx");
//put_string(&serial_port, serial_pin_out, addr[i])
}
if (OneWire::crc8(addr, 7) != addr[7]) {
put_string(&serial_port, serial_pin_out, "CRC is not valid!");
return;
}
//Serial.println();
// the first ROM byte indicates which chip
switch (addr[0]) {
case 0x10:
put_string(&serial_port, serial_pin_out, " Chip = DS18S20"); // or old DS1820
type_s = 1;
break;
case 0x28:
put_string(&serial_port, serial_pin_out, " Chip = DS18B20");
type_s = 0;
break;
case 0x22:
put_string(&serial_port, serial_pin_out, " Chip = DS1822");
type_s = 0;
break;
default:
put_string(&serial_port, serial_pin_out, "Device is not a DS18x20 family device.");
return;
}
ds.reset();
ds.select(addr);
ds.write(0x44, 1); // start conversion, with parasite power on at the end
delay(1000); // maybe 750ms is enough, maybe not
// we might do a ds.depower() here, but the reset will take care of it.
present = ds.reset();
ds.select(addr);
ds.write(0xBE); // Read Scratchpad
put_string(&serial_port, serial_pin_out, " Data = ");
put_string(&serial_port, serial_pin_out, "xxx");
//put_string(&serial_port, serial_pin_out, present, HEX);
put_string(&serial_port, serial_pin_out, " ");
for ( i = 0; i < 9; i++) { // we need 9 bytes
data[i] = ds.read();
//Serial.print(data[i], HEX);
put_string(&serial_port, serial_pin_out, " thing");
}
put_string(&serial_port, serial_pin_out, " CRC=");
//put_string(&serial_port, serial_pin_out, OneWire::crc8(data, 8), HEX);
// Convert the data to actual temperature
// because the result is a 16 bit signed integer, it should
// be stored to an "int16_t" type, which is always 16 bits
// even when compiled on a 32 bit processor.
int16_t raw = (data[1] << 8) | data[0];
if (type_s) {
raw = raw << 3; // 9 bit resolution default
if (data[7] == 0x10) {
// "count remain" gives full 12 bit resolution
raw = (raw & 0xFFF0) + 12 - data[6];
}
} else {
byte cfg = (data[4] & 0x60);
// at lower res, the low bits are undefined, so let's zero them
if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms
else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
//// default is 12 bit resolution, 750 ms conversion time
}
celsius = (float)raw / 16.0;
fahrenheit = celsius * 1.8 + 32.0;
put_string(&serial_port, serial_pin_out, " Temperature = ");
//put_string(&serial_port, serial_pin_out, celsius);
put_string(&serial_port, serial_pin_out, " Celsius, ");
//put_string(&serial_port, serial_pin_out, fahrenheit);
put_string(&serial_port, serial_pin_out, " Fahrenheit");
}
int main(void) {
// Set clock divider to 1.
CLKPR = (1 << CLKPCE);
CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
// Initialize output pins.
set(serial_port, serial_pin_out);
output(serial_direction, serial_pin_out);
// Configure led pin as an output.
DDRB |= led_pin;
// Configure button_pin as an input.
DDRA &= ~button_pin;
// Activate button_pin's pullup resistor.
PORTA |= button_pin;
while (1) {
// Turn on the LED when the button is pressed.
if (PINA & button_pin) {
// Turn off the LED.
PORTB &= ~led_pin;
//put_char(&serial_port, serial_pin_out, '0');
//put_char(&serial_port, serial_pin_out, '1');