Skip to content
Snippets Groups Projects
Commit ea7d5480 authored by Erik Strand's avatar Erik Strand
Browse files

Answer 13.2

parent 369a0115
Branches
No related tags found
No related merge requests found
...@@ -65,7 +65,34 @@ field of a magnetic dipole $$\vec{m}$$ is ...@@ -65,7 +65,34 @@ field of a magnetic dipole $$\vec{m}$$ is
$$ $$
\vec{B} = \frac{\mu_0}{4 \pi} \vec{B} = \frac{\mu_0}{4 \pi}
\left[ \frac{3 \hat{x} (\hat{x} \cdot \vec{m}) - \vec{m}}{|\vec{x}|^3} \right] \left[ \frac{3 \hat{x} (\vec{m} \cdot \hat{x}) - \vec{m}}{|\vec{x}|^3} \right]
$$
The force between two magnetic dipoles $$m_1$$ and $$m_2$$ (with associated fields $$B_1$$ and
$$B_2$$) is $$F = -\nabla (m_1 \cdot B_2)$$, and the characteristic interaction energy is $$m_1
\cdot B_2$$. This will be maximized when $$m_1$$ and $$B_2$$ are parallel. From the equation above,
we can see that the field strength will be maximized when $$\hat{x}$$ is antiparallel to $$\vec{m}$$.
Assuming a separation of 1 angstrom, the total energy is thus
$$
\begin{align*}
E_m &= m \cdot \frac{\mu_0}{4 \pi} \left( \frac{4 m}{r^3} \right) \\
&= \frac{\mu_0 m^2}{\pi r^3} \\
&= \frac{\num{1.26e-6} \si{N/A^2} (\num{-9.28e-24} \si{J/T})^2}{\pi (10^{-10} \si{m})^3} \\
&= \num{3.5e-23} \si{J}
\end{align*}
$$
Meanwhile their electrostatic potential is
$$
\begin{align*}
E_e &= q E \\
&= q \frac{q}{4 \pi \epsilon_0 r} \\
&= \frac{q^2}{4 \pi \epsilon_0 r} \\
&= \frac{(\num{1.6e-19} \si{C})^2}{4 \pi \cdot \num{8.85e-12} \si{F/m} \cdot 10^{-10} \si{m}} \\
&= \num{2.3e-18} \si{J}
\end{align*}
$$ $$
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment