Skip to content
Snippets Groups Projects
Commit 63393839 authored by Erik Strand's avatar Erik Strand
Browse files

Answer 8.4

parent 675ed243
No related branches found
No related tags found
No related merge requests found
...@@ -79,3 +79,67 @@ $$ ...@@ -79,3 +79,67 @@ $$
{:.question} {:.question}
For an infinitesimal dipole antenna, what are the gain and the area, and what is their ratio? For an infinitesimal dipole antenna, what are the gain and the area, and what is their ratio?
From the text we know that
$$
\langle |P| \rangle
= \frac{I_0^2 k^2 d^2}{32 \pi^2 r^2} \sqrt{\frac{\mu_0}{\epsilon_0}} \sin^2 \theta
$$
and
$$
W = \frac{I_0^2 \pi}{3} \sqrt{\frac{\mu_0}{\epsilon_0}} \left( \frac{d}{\lambda} \right)^2
$$
Thus
$$
\begin{align*}
G &= \max_{\theta, \phi} \frac{\langle |P(r = 1, \theta, \phi)| \rangle}{W/4 \pi} \\
&= 4 \pi \frac{I_0^2 k^2 d^2}{32 \pi^2} \sqrt{\frac{\mu_0}{\epsilon_0}}
\frac{3}{I_0^2 \pi} \sqrt{\frac{\epsilon_0}{\mu_0}} \left( \frac{\lambda}{d} \right)^2 \\
&= \frac{(2 \pi \lambda^{-1})^2}{8 \pi^2} 3 \lambda^2 \\
&= \frac{3}{2}
\end{align*}
$$
since $$k = 2 \pi / \lambda$$.
To find the area, recall that the maximum power received is $$V^2 / 8 R$$. This will be equal to
the area times the Poynting vector. Thus
$$
\begin{align*}
\frac{V^2}{8 R} &= \langle | P | \rangle A \\
&= \frac{1}{2} \sqrt{\frac{\epsilon_0}{\mu_0}} E^2_\text{max} A
\end{align*}
$$
Solving for $$A$$,
$$
\begin{align*}
A &= \frac{V^2}{4 R} \sqrt{\frac{\mu_0}{\epsilon_0}} \frac{1}{E^2_\text{max}} \\
&= \frac{V^2}{4} \sqrt{\frac{\mu_0}{\epsilon_0}} \frac{1}{E^2_\text{max}}
\frac{3}{2 \pi} \sqrt{\frac{\epsilon_0}{\mu_0}} \left( \frac{\lambda}{d} \right)^2 \\
&= \frac{3}{8} \frac{V^2}{E^2_\text{max}} \left( \frac{\lambda}{d} \right)^2
\end{align*}
$$
since for an infinitesimal dipole radiator
$$
R = \frac{2 \pi}{3} \sqrt{\frac{\mu_0}{\epsilon_0}} \left( \frac{d}{\lambda} \right)^2
$$
Now we need to relate the voltage and the maximum magnitude of the electric field. The whole point
of the antenna is to pick up oscillating electric and magnetic fields, and the presence of the
latter makes voltage path dependent. So let's integrate along our (infinitely thin) antenna. Our
antenna has an infinitesimal length $$d$$, so the field will be constant across it. Thus $$d$$, $$V
= E_\text{max} d$$. As such
$$
A = \frac{3}{8} \lambda^2
$$
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment