Skip to content
Snippets Groups Projects
Commit 57c9fc6b authored by Erik Strand's avatar Erik Strand
Browse files

Equation formatting

parent 2593c9cb
Branches
No related tags found
No related merge requests found
......@@ -114,11 +114,13 @@ real $$x$$.
Let's see what the Fourier transform of the conjugate of a function looks like.
$$
\begin{align*}
(\mathcal{F} \overline{f})(x)
= \int_\mathbb{R} \overline{f(x')} e^{-2 \pi i x' x} \mathrm{d} x'
= \int_\mathbb{R} \overline{f(x') e^{2 \pi i x' x}} \mathrm{d} x'
= \overline{\int_\mathbb{R} f(x') e^{2 \pi i x' x} \mathrm{d} x'}
= \overline{(\mathcal{F}^{-1} f)(x)}
&= \int_\mathbb{R} \overline{f(x')} e^{-2 \pi i x' x} \mathrm{d} x' \\
&= \int_\mathbb{R} \overline{f(x') e^{2 \pi i x' x}} \mathrm{d} x' \\
&= \overline{\int_\mathbb{R} f(x') e^{2 \pi i x' x} \mathrm{d} x'} \\
&= \overline{(\mathcal{F}^{-1} f)(x)}
\end{align*}
$$
This implies that $$ \mathcal{F}^{-1} f$$ is the complex conjugate of $$\mathcal{F} \overline{f}$$.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment