Skip to content
Snippets Groups Projects
Commit 369a0115 authored by Erik Strand's avatar Erik Strand
Browse files

Start explaining the projection slice theorem

parent 6bc88d50
Branches
No related tags found
No related merge requests found
...@@ -7,3 +7,32 @@ title: Final Project ...@@ -7,3 +7,32 @@ title: Final Project
## Background ## Background
- [Radon Transform](http://www-math.mit.edu/~helgason/Radonbook.pdf) by Sigurdur Helgason - [Radon Transform](http://www-math.mit.edu/~helgason/Radonbook.pdf) by Sigurdur Helgason
## 2d Reconstruction
In two dimensions, the theory of image reconstruction from projections is pretty simple. Assume some
density function $$f : \mathbb{R}^2 \rightarrow \mathbb{R}$$ (with compact support). The projection
of this density function to the x axis is
$$
p(x) = \int_\mathbb{R} f(x, y) dy
$$
Meanwhile, the Fourier transform of $$f$$ is
$$
\hat{f}(\hat{x}, \hat{y})
= \int_\mathbb{R} \int_\mathbb{R} f(x, y) e^{-2 \pi i (\hat{x} x + \hat{y} y)} dx dy
$$
Note that the slice along the $$\hat{x}$$ axis in frequency space is described by
$$
\begin{align*}
\hat{f}(\hat{x}, 0)
&= \int_\mathbb{R} \int_\mathbb{R} f(x, y) e^{-2 \pi i \hat{x} x} dx dy \\
&= \int_\mathbb{R} \left( \int_\mathbb{R} f(x, y) dy \right) e^{-2 \pi i \hat{x} x} dx \\
&= \int_\mathbb{R} p(x) e^{-2 \pi i \hat{x} x} dx \\
&= \hat{p}(\hat{x})
\end{align*}
$$
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment