Skip to content
Snippets Groups Projects
Commit 23705ba2 authored by Erik Strand's avatar Erik Strand
Browse files

Answer 3.1 (a)

parent 00dd7c8b
Branches
No related tags found
No related merge requests found
......@@ -8,6 +8,27 @@ title: Problem Set 2
Derive equation (3.16) from the binomial distribution and Stirling’s approximation.
Fix any $$\lambda$$ between 0 and 1. For any $$n$$, the binomial probability mass function for $$n$$
trials with probability of success $$p = \lambda / n$$ is
$$
\begin{align*}
p(k; n, \lambda/n)
&= {n \choose k} \left( \frac{\lambda}{n} \right)^k \left( 1 - \frac{\lambda}{n} \right)^{n - k} \\
&= \frac{n (n - 1) \cdots (n - k + 1)}{k!} \left( \frac{\lambda}{n} \right)^k
\left( 1 - \frac{\lambda}{n} \right)^{n - k} \\
&= \frac{n^k + \mathcal{O}\left( n^{k - 1} \right) }{k!} \left( \frac{\lambda}{n} \right)^k
\left( 1 - \frac{\lambda}{n} \right)^{n - k} \\
&= \frac{\lambda^k}{k!} \left( 1 - \frac{\lambda}{n} \right)^{n - k} +
\frac{\mathcal{O}\left( n^{k - 1} \right) }{k!} \left( \frac{\lambda}{n} \right)^k
\left( 1 - \frac{\lambda}{n} \right)^{n - k}
\end{align*}
$$
As $$n$$ approaches infinity, the second term goes to zero because the $$n^{-k}$$ dominates
$$\mathcal{O}\left( n^{k - 1} \right)$$ (and the last factor is always between 0 and 1). The first
term approaches $$\lambda^k e^{-\lambda}/k!$$ which is the Poisson distribution.
### (b)
Use it to derive equation (3.18).
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment