Select Git revision
-
Alfonso Parra Rubio authoredAlfonso Parra Rubio authored
plot_stamps.py 1.12 KiB
import pandas as pd
import matplotlib.pyplot as plt
def plot_stamps(stamps, stamp_count, pck_len):
# make df from stamps
df = pd.DataFrame({'timestamps': stamps})
# calculate deltas between stamps
df['deltas'] = df['timestamps'].diff()
# clean NaN's
df = df.dropna()
# wipe obviously-wrong deltas (i.e. the 1st, which goes 0-start-us)
df = df[df['deltas'] < 100000]
# Plotting
fig, ax1 = plt.subplots(figsize=(11, 3))
ax1.set_xlim([1750, 2750])
# Primary x-axis (time deltas)
df['deltas'].plot(kind='hist', bins=100, ax=ax1)
ax1.set_xlabel('Time-Stamp Deltas (us) and equivalent (MBits/s)')
ax1.set_ylabel(f'Frequency (of {stamp_count})')
# get axis ticks to calculate equivalent bandwidths
x_ticks = ax1.get_xticks()
ax1.set_xticks(x_ticks)
bandwidths = [((pck_len * 8) * (1e6 / x)) / 1e6 for x in x_ticks]
ticks = []
for i in range(len(x_ticks)):
print(i, x_ticks[i], bandwidths[i])
ticks.append(f"{x_ticks[i]:.0f} ({bandwidths[i]:.3f})")
ax1.set_xticklabels(ticks)
plt.title(f'Single-Source COBS Data Sink Deltas, pck_len={pck_len}')
plt.tight_layout()
plt.show()