
Appendix 2 Benchmarking

Benchmarking is a subject that receives both too little and too much attention. Too little,
because knowing the relative speeds of machines, languages, and algorithms can have an
enormous impact on your ability to obtain timely results. Too much, because tests that
may have little bearing on practical problems can dominate manufacturers’ advertising
and users’ purchase decisions.
Amid all of the hype, a simple recurring truth is that the best benchmark is a problem

that you are interested in. An early standard was the Linpack set of subroutines, which
have been run on an enormous range of machines. Results for the TOP500 systems are
listed at https://www.top500.org, and since the largest ones use as much power as
a whole city the Green500 list (https://www.top500.org/lists/green500) tracks
their relative efficiency.
Because there is a great deal of specialized structure in these routines, aggressive

compilers used switches that recognized them and used carefully hand-tuned code to
appear faster on this benchmark. To prevent that, as well as to cover a much broader
range of applications, an industry-wide group defined a suite of test problems called the
SPEC benchmark (https://www.spec.org). This is a comprehensive set of programs
covering many types of numerical algorithms. Where it’s available, it’s a reliable guide
to machine speed. However, the suite may not be available for a particular system that
you’re interested in, and it is not freely accessible. For this reason it’s useful to have a
simple test program that can provide a rough order-of-magnitude estimate of speed.
I’ve found it convenient to use a series expansion of π,

π = 4 tan−1(1)

≈
N∑
i=1

0.5
(i− 0.75)(i− 0.25)

.

Summing this series requires five floating-point operations per step (ignoring the overhead
for iterating the loop), providing an estimate of the computational speed by measuring
the time taken to sum it. This is usually reported in the number floating-point operations
per second, called flops.
This is a classic parallel computation, a scatter-gather that can distribute terms in

the sum to multiple processors and then collect the result. In particular, it is a type
of map-reduce, in which each node calculates a value based on its index, and these
are then centrally summed. There are more efficient ways to calculate pi [Bailey et al.,
1996], and because this is limited to the precision of the numbers used summing beyond



292 Benchmarking DRAFT

Table A2.1. Selected execution speeds to sum a series expansion of π.

speed (Gflops) system version
17,340,800 IBM AC922 (Summit) C++, MPI, CUDA, 2048 nodes, 12228 GPUs
88,333 Cray XC40 (Theta) C, MPI, OpenMP, 1024 nodes, 64 cores/node
16,239 NVIDIA A100 C++, CUDA, 8 GPUs
2,117 Intel 8175M C, MPI, 10 nodes, 96 cores/node
2,102 Intel 8175M Python, Numba, MPI, 10 nodes, 96 cores/node
2,052 NVIDIA A100 C++, CUDA, 6192 cores
1,595 IBM Blue Gene/P C, MPI, 4096 processes
1,090 NVIDIA V100 Python, Numba, CUDA, 5120 cores
811 Cray XT4 C, MPI, 2048 processes
315 Intel 8175M Python, Numba, 96 cores
267 Intel 8175M C++, 96 threads
152 Intel 8175M JavaScript, 96 workers
44.6 Intel i7-8700T C, 6 threads
9.37 Intel i7-8700T C, optimized
1.78 Raspberry Pi 4 C, 4 threads
0.85 Connection Machine CM-2 C, 32k processors
0.57 Intel i7-8700T C, unoptimized
0.47 Intel i7-8700T Python, NumPy
0.148 IBM ES/9000 C
0.134 Intel Pentium III C
0.118 Cray Y-MP4 C, vector
0.074 Raspberry Pi Zero C
0.029 Intel i7-8700T Python
0.017 SAMD51J20A C
0.013 Intel Pentium Pro C
0.010 Cray Y-MP4 C, scalar
0.003 RP2040 Arduino
0.001 Sun SPARCStation 1 C
0.001 DEC VAX 8650 C
0.0007 Intel 486 C
0.0003 RP2040 MicroPython
0.0001 ATtiny1614 Arduino
0.00003 Sun 3/60 C
0.00003 Intel 286 C
0.000001 Intel 8088 C

that is wasted in round-off, but the calculation is simple to port to new systems, and
the validity of the result is easy to check. Table A2.1 shows some sample speeds for
machines, languages, and options. It is NOT in any way a thorough characterization of
these systems, but it is an easily-generated estimate that is typically surprisingly close to
much more careful benchmarks.
The single most remarkable feature of this table is that it spans thirteen orders of

magnitude! That’s the difference between an algorithm taking the duration of recorded
history and a fraction of a second. For some big problems, literally the fastest way to
solve them was to wait for a faster computer to be developed.


