--- title: Problem Set 2 --- ## 3.1 ### (a) {:.question} Derive equation (3.16) (i.e. the Poisson probability density function) from the binomial distribution and Stirling’s approximation. Fix any (positive, real) $$\lambda$$. For any $$n$$, the binomial probability mass function for $$n$$ trials with probability of success $$p = \lambda / n$$ is $$ \begin{align*} p(k; n, \lambda/n) &= {n \choose k} \left( \frac{\lambda}{n} \right)^k \left( 1 - \frac{\lambda}{n} \right)^{n - k} \\ &= \frac{n (n - 1) \cdots (n - k + 1)}{k!} \left( \frac{\lambda}{n} \right)^k \left( 1 - \frac{\lambda}{n} \right)^{n - k} \\ &= \frac{n^k + \mathcal{O}\left( n^{k - 1} \right) }{k!} \left( \frac{\lambda}{n} \right)^k \left( 1 - \frac{\lambda}{n} \right)^{n - k} \\ &= \frac{\lambda^k}{k!} \left( 1 - \frac{\lambda}{n} \right)^{n - k} + \frac{\mathcal{O}\left( n^{k - 1} \right) }{k!} \left( \frac{\lambda}{n} \right)^k \left( 1 - \frac{\lambda}{n} \right)^{n - k} \end{align*} $$ As $$n$$ approaches infinity, the second term goes to zero because the $$n^{-k}$$ dominates $$\mathcal{O}\left( n^{k - 1} \right)$$ (and the last factor is always between 0 and 1). The first term approaches $$\lambda^k e^{-\lambda}/k!$$ which is the Poisson distribution. ### (b) {:.question} Use it to derive equation (3.18) ($$\langle k (k - 1) \cdots (k - m + 1) \rangle = \lambda^m$$) when k follows the Poisson distribution with average number of events $$\lambda$$. First, let's verify that $$\langle k \rangle = \lambda$$. This will serve as the base case for an inductive argument. $$ \begin{align*} \langle k \rangle &= \sum_{k = 0}^\infty k \frac{\lambda^k e^{-\lambda}}{k!} \\ &= \lambda \sum_{k = 1}^\infty \frac{\lambda^{k - 1} e^{-\lambda}}{(k - 1)!} \\ &= \lambda \sum_{k = 0}^\infty \frac{\lambda^k e^{-\lambda}}{k!} \\ &= \lambda \end{align*} $$ Now assume that $$\langle k (k - 1) \cdots (k - m + 1) \rangle = \lambda^m$$. $$ \begin{align*} \langle k (k - 1) \cdots (k - m + 1) (k - m) \rangle &= \sum_{k = 0}^\infty k \cdots (k - m) \frac{\lambda^k e^{-\lambda}}{k!} \\ &= \lambda \sum_{k = 1}^\infty (k - 1) \cdots (k - m) \frac{\lambda^{k - 1} e^{-\lambda}}{(k - 1)!} \\ &= \lambda \sum_{k = 0}^\infty k \cdots (k - m + 1) \frac{\lambda^k e^{-\lambda}}{k!} \\ &= \lambda \lambda^m \\ &= \lambda^{m + 1} \end{align*} $$ ### (c) {:.question} Use (b) to derive equation (3.19): $$\sigma / \langle k \rangle = 1 / \sqrt{\lambda}$$. To compute $$\sigma$$, we need to know what $$\langle k^2 \rangle$$ is. It can be found using the same trick we relied on for the last problem. $$ \begin{align*} \langle k^2 \rangle &= \sum_{k = 0}^\infty k^2 \frac{\lambda^k e^{-\lambda}}{k!} \\ &= \lambda \sum_{k = 1}^\infty k \frac{\lambda^{k - 1} e^{-\lambda}}{(k - 1)!} \\ &= \lambda \sum_{k = 0}^\infty (k + 1) \frac{\lambda^k e^{-\lambda}}{k!} \\ &= \lambda \left( \sum_{k = 0}^\infty k \frac{\lambda^k e^{-\lambda}}{k!} + \sum_{k = 0}^\infty \frac{\lambda^k e^{-\lambda}}{k!} \right) \\ &= \lambda (\lambda + 1) \end{align*} $$ Thus $$\sigma^2 = \langle k^2 \rangle - \langle k \rangle^2 = \lambda (\lambda + 1) - \lambda^2 = \lambda$$, and $$\sigma / \langle k \rangle = \sqrt{\lambda} / \lambda = 1 / \sqrt{\lambda}$$. ## (3.2) {:.question} Assume that photons are generated by a light source independently and randomly with an average rate N per second. How many must be counted by a photodetector per second to be able to determine the rate to within 1%? To within 1 part per million? How many watts do these cases correspond to for visible light? Note: in the previous problem I used $$\lambda$$ as the expected number of events of a Poisson process. Here I'll use $$N$$ to avoid confusion with wavelength. Since the photons are generated independently and with a constant average rate, it's reasonable to model their creation as a Poisson process. We have already found that $$\sigma = \sqrt{N}$$. For large $$N$$, the Poisson distribution is very close to the normal distribution. So about two thirds of the probability mass lies between $$N - \sigma$$ and $$N + \sigma$$. Thus if $$\sigma \leq 0.01 N$$, in any given second it's more likely than not that the number of photons emitted is within one percent of the true mean. Thus we'd need $$\sqrt{N} \leq 0.01 N$$, i.e. $$N \geq 10^4$$. To have the same probability that the number of observed photons is within $$10^{-6} N$$ of the true value, we need $$N \geq 10^{12}$$. The wavelength of visible light is about $$\num{500e-9} \si{m}$$, so the energy of each photon will be $$ \begin{align*} E &= \frac{h c}{\lambda} \\ &= \frac{\num{6.626e-34} \si{J.s} \cdot \num{3e8} \si{m/s}} {\num{500e-9} \si{m}} \\ &= \num{3.8e-19} \si{J} \end{align*} $$ Thus $$10^4$$ photons per second is $$\num{3.8e-15} \si{W}$$, and $$10^{12}$$ photons per second is $$\num{3.8e-7} \si{W}$$. Some caveats about this answer: the Poisson distribution is strictly greater than zero on its whole domain, so one can never be *certain* that they have found the correct value within any error bounds. That is, even if the real value of $$N$$ is one, there's still a (vanishingly) slight chance you'll see a million. The best we can do is find an answer that's [probably approximately correct](https://en.wikipedia.org/wiki/Probably_approximately_correct_learning). Second, I only found limits on the probability that the number of emitted photons is near the true (known) average. It's a more subtle question to ask for the probability that a given estimate is within one percent of the true (latent) average. That could be tackled with confidence intervals, p-values, Bayes factors, or direct posterior estimation, though none would be quite so simple. And as an unapologetic Bayesian I'm required to point out that my confidence I've determined $$N$$ with some precision depends on my prior for $$N$$. This would be very real if we were, for instance, counting photons in a lab module for this course. I would be more confident in my answer if I measured something close to $$\num{1e12}$$ photons, than if I measured something like $$\num{3.64e12}$$, since I think it's more likely that the instructor would choose a nice round number with lots of zeros. ## (3.3) {:.question} Consider an audio amplifier with a 20 kHz bandwidth. ### (a) {:.question} If it is driven by a voltage source at room temperature with a source impedance of 10kΩ how large must the input voltage be for the SNR with respect to the source Johnson noise to be 20 dB? $$ \begin{align*} \langle V_\text{noise}^2 \rangle &= 4 k T R \Delta f \\ &= 4 \cdot \num{1.38e-23} \si{J/K} \cdot 300 \si{K} \cdot 10^4 \si{\ohm} \cdot \num{20e3} \si{Hz} \\ &= \num{3.3e-12} \si{V^2} \end{align*} $$ So for the input signal to be 20dB louder, we need $$ 10 \log_{10} \left( \frac{V_\text{signal}^2}{\num{3.3e-12}} \right) = 20 \\ V_\text{signal}^2 = 10^2 \cdot \num{3.3e-12} \si{V^2} = \num{3.3e-10} \si{V^2} $$ Note that I use a factor of 10 since $$V^2$$ is proportional to power. This signal strength would be achieved, for instance, by a sinusoid that ranges between $$-\num{6.6e-10}$$ and $$\num{6.6e-10}$$ volts. ### (b) {:.question} What size capacitor has voltage fluctuations that match the magnitude of this Johnson noise? Since a farad is equal to a second per ohm, purely dimensional considerations imply that the noise energy of the capacitor is approximately $$kT/C$$. Indeed this turns out to be exactly correct. The energy in a capacitor is $$C V^2 / 2$$, so by the equipartition theorem, $$kT/2 = \langle C V^2 / 2 \rangle$$. This implies that $$\langle V^2 \rangle = k T / C$$. Thus the capacitor that matches the voltage fluctuations found in part (b) at room temperature has capacitance $$ \begin{align*} C &= \frac{k T}{\left \langle V^2 \right \rangle} \\ &= \frac{\num{1.38e-23} \si{J/K} \cdot 300 \si{K}}{\num{3.3e-12} \si{V^2}} \\ &= \num{1.25e-9} \si{F} \end{align*} $$ ### (c) {:.question} If it is driven by a current source, how large must it be for the RMS shot noise to be equal to 1% of that current? RMS shot noise is the square root of $$2 q I \Delta f$$. So we want $$\sqrt{2 q \Delta f I} = 0.01 I$$, which is solved by $$ \begin{align*} I &= \frac{2q \Delta f}{0.01^2} \\ &= \frac{2 \cdot \num{1.6e-19} \si{C} \cdot 20 \si{kHz}}{10^{-4}} \\ &= \num{6.4e-11} A \end{align*} $$ ## 3.4 {:.question} This problem is much harder than the others. Consider a stochastic process $$x(t)$$ that randomly switches between x = 0 and x = 1. Let $$\alpha \mathrm{d}t$$ be the probability that it makes a transition from 0 to 1 during the interval $$\mathrm{d}t$$ if it starts in x = 0, and let $$\beta \mathrm{d}t$$ be the probability that it makes a transition from 1 to 0 during $$\mathrm{d}t$$ if it starts in x = 1. ### (a) {:.question} Write a matrix differential equation for the change in time of the probability $$p_0(t)$$ to be in the 0 state and the probability $$p_1(t)$$ to be in the 1 state. $$ \frac{d}{dt} \begin{bmatrix} p_0(t) \\ p_1(t) \end{bmatrix} = \begin{bmatrix} -\alpha & \beta \\ \alpha & -\beta \end{bmatrix} \begin{bmatrix} p_0(t) \\ p_1(t) \end{bmatrix} $$ ### (b) {:.question} Solve this by diagonalizing the 2 × 2 matrix. Solving a system of ODEs isn't necessary here, since $$p_1(t) = 1 - p_0(t)$$. So we just need to solve $$ \begin{align*} \frac{d}{dt} p_0(t) &= -\alpha p_0(t) + \beta (1 - p_0(t)) \\ &= \beta -(\alpha + \beta) p_0(t) \end{align*} $$ Since the derivative is proportional to the function, it's solved generally by an exponential $$ p_0(t) = A + B e^{-(\alpha + \beta) t} $$ Then $$ \begin{align*} \frac{d}{dt} p_0(t) &= -(\alpha + \beta) B e^{-(\alpha + \beta) t} \\ &= (\alpha + \beta) A - (\alpha + \beta) (A + B e^{-(\alpha + \beta) t}) \\ &= (\alpha + \beta) A - (\alpha + \beta) p_0(t) \end{align*} $$ which implies that $$A = \beta / (\alpha + \beta)$$. $$B$$ is determined by $$p_0(t)$$: $$ p_0(0) = \frac{\beta}{\alpha + \beta} + B $$ So putting everything together we have $$ \begin{align*} p_0(t) &= \frac{\beta}{\alpha + \beta} + \left(p_0(0) - \frac{\beta}{\alpha + \beta} \right) e^{-(\alpha + \beta) t} \\ p_1(t) &= \frac{\alpha}{\alpha + \beta} - \left(p_0(0) - \frac{\beta}{\alpha + \beta} \right) e^{-(\alpha + \beta) t} \\ &= \frac{\alpha}{\alpha + \beta} + \left(p_1(0) - \frac{\alpha}{\alpha + \beta} \right) e^{-(\alpha + \beta) t} \end{align*} $$ ### (c) {:.question} Use this solution to find the autocorrelation function $$\langle x(t)x(t + \tau) \rangle$$. For positive $$\tau$$, $$ \begin{align*} \langle x(t) x(t + \tau) \rangle &= \sum_{i, j \in \{0, 1\} \times \{0, 1\}} p(x(t) = i \cap x(t + \tau) = j) i j \\ &= p(x(t) = 1 \cap x(t + \tau) = 1) \\ &= p_1(t + \tau | x(t) = 1) p_1(t) \\ &= p_1(\tau | p_1(0) = 1) p_1(t) \\ &= \left( \frac{\alpha}{\alpha + \beta} + \left(1 - \frac{\alpha}{\alpha + \beta} \right) e^{-(\alpha + \beta) \tau} \right) \frac{\alpha}{\alpha + \beta} \\ &= \left( \frac{\alpha}{\alpha + \beta} + \frac{\beta}{\alpha + \beta} e^{-(\alpha + \beta) \tau} \right) \frac{\alpha}{\alpha + \beta} \\ &= \frac{\alpha}{(\alpha + \beta)^2} \left( \alpha + \beta e^{-(\alpha + \beta) \tau} \right) \end{align*} $$ By symmetry this is an even function. That is, $$\langle x(t) x(t + \tau) \rangle = \langle x(t) x(t - \tau) \rangle$$. ### (d) {:.question} Use the autocorrelation function to show that the power spectrum is a Lorentzian. By Wiener-Khinchin, $$ \begin{align*} S(f) &= \int_\mathbb{R} \frac{\alpha}{(\alpha + \beta)^2}\left( \alpha + \beta e^{-(\alpha + \beta) |\tau|} \right) e^{-2 \pi i f \tau} \mathrm{d} \tau \\ &= \frac{\alpha \beta}{(\alpha + \beta)^2} \left( \int_\mathbb{R} \frac{\alpha}{\beta} e^{-2 \pi i f \tau} \mathrm{d} \tau + \int_\mathbb{R} e^{-(\alpha + \beta) |\tau| -2 \pi i f \tau} \mathrm{d} \tau \right) \end{align*} $$ The first integral evaluates to a delta function $$\alpha / \beta \delta(f)$$. The second can be broken into a sum of two integrals over the positive and negative halves of $$\mathbb{R}$$: $$ \begin{align*} \int_0^\infty e^{-\tau ((\alpha + \beta) + 2 \pi i f)} \mathrm{d} \tau &= \left[ \frac{-1}{(\alpha + \beta) + 2 \pi i f} e^{-\tau ((\alpha + \beta) + 2 \pi i f)} \right]_0^\infty \\ &= \frac{1}{(\alpha + \beta) + 2 \pi i f} \\ \int_{-\infty}^0 e^{\tau ((\alpha + \beta) - 2 \pi i f)} \mathrm{d} \tau &= \left[ \frac{1}{(\alpha + \beta) - 2 \pi i f} e^{\tau ((\alpha + \beta) - 2 \pi i f)} \right]_{-\infty}^0 \\ &= \frac{1}{(\alpha + \beta) - 2 \pi i f} \\ \end{align*} $$ Putting everything together, $$ \begin{align*} S(f) &= \frac{\alpha \beta}{(\alpha + \beta)^2} \left( \frac{\alpha}{\beta} \delta(f) + \frac{1}{(\alpha + \beta) + 2 \pi i f} + \frac{1}{(\alpha + \beta) - 2 \pi i f} \right) \\ &= \frac{\alpha \beta}{(\alpha + \beta)^2} \left( \frac{\alpha}{\beta} \delta(f) + \frac{2 (\alpha + \beta)}{(\alpha + \beta)^2 + (2 \pi f)^2} \right) \\ &= \frac{\alpha^2}{(\alpha + \beta)^2} \delta(f) + \frac{\alpha \beta}{(\alpha + \beta)^2} \frac{2 (\alpha + \beta)}{(\alpha + \beta)^2 + (2 \pi f)^2} \\ &= \frac{\alpha^2}{(\alpha + \beta)^2} \delta(f) + \frac{\alpha \beta}{(\alpha + \beta)^2} \frac{2 (\alpha + \beta)^{-1}}{1 + \left( \frac{2 \pi f}{\alpha + \beta} \right)^2} \\ \end{align*} $$ Ignoring the delta function, up to a constant factor this is a Lorentzian distribution with $$\tau = 1 / (\alpha + \beta)$$. ### (e) {:.question} At what frequency is the magnitude of the Lorentzian reduced by half relative to its low-frequency value? Looking only at the Lorentzian portion, $$ S(0) = \frac{2 \alpha \beta}{(\alpha + \beta)^3} $$ So we must plug this in and solve for $$f$$: $$ \begin{align*} \frac{\alpha \beta}{(\alpha + \beta)^2} \frac{2 (\alpha + \beta)^{-1}}{1 + \left( \frac{2 \pi f}{\alpha + \beta} \right)^2} &= \frac{1}{2} \frac{2 \alpha \beta}{(\alpha + \beta)^3} \\ \frac{1}{1 + \left( \frac{2 \pi f}{\alpha + \beta} \right)^2} &= \frac{1}{2} \\ 1 &= \left( \frac{2 \pi f}{\alpha + \beta} \right)^2 \\ f &= \frac{\alpha + \beta}{2 \pi} \end{align*} $$ ### (f) {:.question} For a thermally activated process, show that a flat distribution of barrier energies leads to a distribution of switching times $$p(\tau) \propto 1/\tau$$, and in turn to $$S(f) \propto 1/f$$. We are assuming the distribution of barrier energies $$p(E)$$ is constant. According to (3.37), for a thermally activated process the characteristic switching time is a function of the energy: $$\tau = \tau_0 e^{E/kT}$$. So to get the distribution $$p(\tau)$$, we just need to transform $$p(E)$$ accordingly. In particular, $$ p(\tau) = p(E) \frac{k T}{\tau} $$ Let's prove that this is the case. Given any random variable $$X$$, and monotonic function $$f$$, let $$Y = f(X)$$. Then the cumulative distribution functions are related by $$ \begin{align*} p(Y \leq y) &= p(f(X) \leq y) \\ &= p(X \leq f^{-1}(y)) \end{align*} $$ By the fundamental theorem of calculus, the probability density function is the derivative of the cumulative distribution function. So by employing the chain rule we find that $$ \begin{align*} p(y) &= \frac{d}{dy} p(Y \leq y) \\ &= \frac{d}{dy} p(X \leq f^{-1}(y)) \\ &= p(f^{-1}(y)) \frac{d}{dy} f^{-1}(y) \end{align*} $$ So our result above for $$p(\tau)$$ follows because $$E = k T \log(\tau / \tau_0)$$, so $$dE / d\tau = k T / \tau$$. Now we must show that $$S(f) \propto 1/f$$. $$ \begin{align*} S(f) &= \int_0^\infty p(\tau) \frac{2 \tau}{1 + (2 \pi f \tau)^2} \mathrm{d} \tau \\ &= \int_0^\infty \frac{2 p(E) k T}{1 + (2 \pi f \tau)^2} \mathrm{d} \tau \\ &= \frac{1}{2 \pi f} \int_0^\infty \frac{2 p(E) k T}{1 + \tau^2} \mathrm{d} \tau \\ &= \frac{p(E) k T}{\pi f} \int_0^\infty \frac{1}{1 + \tau^2} \mathrm{d} \tau \\ &= \frac{p(E) k T}{\pi f} \int_0^{\pi/2} \frac{sec^2{\theta}}{1 + tan^2(\theta)} \mathrm{d} \theta \\ &= \frac{p(E) k T}{\pi f} \int_0^{\pi/2} \mathrm{d} \theta \\ &= \frac{p(E) k T}{2 f} \end{align*} $$