--- title: Final Project --- # CT Imaging from Scratch ## Background - [Radon Transform](http://www-math.mit.edu/~helgason/Radonbook.pdf) by Sigurdur Helgason ## 2d Reconstruction In two dimensions, the theory of image reconstruction from projections is pretty simple. Assume some density function $$f : \mathbb{R}^2 \rightarrow \mathbb{R}$$ (with compact support). The projection of this density function to the x axis is $$ p(x) = \int_\mathbb{R} f(x, y) dy $$ Meanwhile, the Fourier transform of $$f$$ is $$ \hat{f}(\hat{x}, \hat{y}) = \int_\mathbb{R} \int_\mathbb{R} f(x, y) e^{-2 \pi i (\hat{x} x + \hat{y} y)} dx dy $$ Note that the slice along the $$\hat{x}$$ axis in frequency space is described by $$ \begin{align*} \hat{f}(\hat{x}, 0) &= \int_\mathbb{R} \int_\mathbb{R} f(x, y) e^{-2 \pi i \hat{x} x} dx dy \\ &= \int_\mathbb{R} \left( \int_\mathbb{R} f(x, y) dy \right) e^{-2 \pi i \hat{x} x} dx \\ &= \int_\mathbb{R} p(x) e^{-2 \pi i \hat{x} x} dx \\ &= \hat{p}(\hat{x}) \end{align*} $$