From d5322149dc5f3c8e9dc4f70de38eabebb8d659c4 Mon Sep 17 00:00:00 2001 From: Erik Strand <erik.strand@cba.mit.edu> Date: Wed, 6 Mar 2019 16:26:43 -0500 Subject: [PATCH] Answer 6.6 --- _psets/4.md | 55 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 55 insertions(+) diff --git a/_psets/4.md b/_psets/4.md index 09d314b..6120ef7 100644 --- a/_psets/4.md +++ b/_psets/4.md @@ -278,8 +278,63 @@ Assume that sunlight has a power energy density of $$1 \si{kW/m^2}$$ (this is a typical average value in the continental USA is $$\approx 200 \si{W/m^2}$$). Estimate the electric field strength associated with this radiation. +The energy delivered per square meter in one second by sunlight is the field energy stored in a 1 +meter by 1 meter by 1 light second volume. So the average energy density of sunlight must be + +$$ +\frac{10^3 \si{J}}{1 \si{m} \cdot 1 \si{m} \cdot \num{3e8} \si{m}} = \num{0.33e-5} \si{J/m^3} +$$ + +The energy density of light in a vacuum is + +$$ +\begin{align*} +U &= \frac{1}{2} (E \cdot D + B \cdot H) \\ +&= \frac{1}{2} \left( \epsilon_0 |E|^2 + \mu_0 |H|^2 \right) \\ +&= \frac{1}{2} \left( \epsilon_0 |E|^2 + \epsilon_0 |E|^2 \right) \\ +&= \epsilon_0 |E|^2 +\end{align*} +$$ + +since $$\vert E \vert / \vert H \vert = \sqrt{\mu_0/\epsilon_0}$$. + +Thus the root mean square magnitude of the electric field must be + +$$ +\frac{\num{0.33e-5} \si{J/m^3}}{\epsilon_0} = \num{3.8e5} \si{V^2/m^2} +$$ + +Since the electric field is a sinusoidal wave, the root mean square amplitude is half the maximum +amplitude. So the peak field strength is $$\num{7.5e5} \si{V/m}$$. + + ### (b) {:.question} If 1 W of power is focused in a laser beam to a square millimeter, what is the field strength? What about if it is focused to the diffraction limit of $$\approx 1 \si{\mu m^2}$$? + +Summarizing the previous section, we found that the root mean square field strength necessary to +deliver $$x$$ watts of power to an area $$A$$ is + +$$ +\frac{x \si{W}}{c \si{m/s}} \cdot \frac{1}{A \si{m^2}} \cdot \frac{1}{\epsilon_0 \si{F/m}} +$$ + +So for one watt to be delivered to a square millimeter, the RMS field strength is + +$$ +\frac{1 \si{W}}{\num{3e8} \si{m/s}} \cdot \frac{1}{10^{-6} \si{m^2}} \cdot \frac{1}{\num{8.85e-12} \si{F/m}} += \num{3.8e8} \si{V^2/m^2} +$$ + +which means the peak field strength is $$\num{7.5e8} \si{V/m}$$. + +If it's focused down to a square micrometer, the RMS field strength is + +$$ +\frac{1 \si{W}}{\num{3e8} \si{m/s}} \cdot \frac{1}{10^{-12} \si{m^2}} \cdot \frac{1}{\num{8.85e-12} \si{F/m}} += \num{3.8e14} \si{V^2/m^2} +$$ + +and the peak field strength is $$\num{7.5e14} \si{V/m}$$. -- GitLab