From 6bc88d5011c1f21a12836bbf0f6257b256f6078d Mon Sep 17 00:00:00 2001 From: Erik Strand <erik.strand@cba.mit.edu> Date: Thu, 25 Apr 2019 01:19:06 -0400 Subject: [PATCH] Answer 13.1 --- _psets/10.md | 40 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) diff --git a/_psets/10.md b/_psets/10.md index a8cc99c..3d1cbbe 100644 --- a/_psets/10.md +++ b/_psets/10.md @@ -9,12 +9,52 @@ title: Problem Set 10 {:.question} Estimate the diamagnetic susceptibility of a typical solid. +Starting from equation 12.15, + +$$ +\begin{align*} +\chi_m &= -\mu_0 \frac{q^2 Z r^2}{4 m_e V} \\ +&= -\num{1.26e-6} \si{N/A^2} \frac{(\num{1.6e-19} \si{C})^2 \cdot 1 \cdot (10^{-10} \si{m})^2} + {4 \cdot \num{9.1e-31} \si{kg} \cdot (10^{-10} \si{m})^3} \\ +&= \num{-8.9e-5} +\end{align*} +$$ + ### (b) {:.question} Using this, estimate the field strength needed to levitate a frog, assuming a gradient that drops to zero across the frog. Express your answer in teslas. +From 12.7, + +$$ +F = -V \mu_0 \chi_m H \frac{d H}{d z} +$$ + +I'll assume the frog is 0.1 meters tall, has a mass of 0.1 kg, and a volume of $$10^{-4} \si{m^3}$$ +(this is consistent with the frog being mostly water). I'll also assume the magnetic field gradient +is constant, so $$dH/dz = H / 0.1$$. Solving for $$H$$, + +$$ +\begin{align*} +H &= \sqrt{-\frac{F z}{V \mu_0 \chi_m}} \\ +&= \sqrt{-\frac{0.1 \si{kg} \cdot 9.8 \si{m/s^2} \cdot 0.1 \si{m}} + {10^{-4} \si{m^3} \cdot \num{1.26e-6} \si{N/A^2} \cdot \num{-8.9e-5}}} \\ +&= \num{3e6} \si{A/m} \\ +\end{align*} +$$ + +Thus the magnetic field is + +$$ +\begin{align*} +B &= \mu_0 H \\ +&= \num{1.26e-6} \si{N/A^2} \cdot \num{3e6} \si{A/m} \\ +&= 3.7 \si{T} +\end{align*} +$$ + ## (13.2) -- GitLab