diff --git a/img/speaker-microscope.jpg b/img/speaker-microscope.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0dd23ae54dac881259f7a9f4cfeb540cc41781e0
Binary files /dev/null and b/img/speaker-microscope.jpg differ
diff --git a/img/speakers-green-with-plates.jpg b/img/speakers-green-with-plates.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0b826223e3a6a88af55713f91346f8a1b9a42bed
Binary files /dev/null and b/img/speakers-green-with-plates.jpg differ
diff --git a/img/waveforms-impedance-1.png b/img/waveforms-impedance-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..e969f8eb19b3ff7adf63d911d1b7487ac2b8284d
Binary files /dev/null and b/img/waveforms-impedance-1.png differ
diff --git a/script/2018.12.26-speaker.py b/script/2018.12.26-speaker.py
new file mode 100644
index 0000000000000000000000000000000000000000..822cadbe85ff439db91f410b63a148b58e5939f2
--- /dev/null
+++ b/script/2018.12.26-speaker.py
@@ -0,0 +1,195 @@
+#!/usr/bin/env python
+from __future__ import division,absolute_import
+import rhinoscriptsyntax as rs
+from math import *	
+import sys
+
+#simple class for vec2
+class V2(object):
+	def __init__(self,*args):
+		if len(args)>1:
+			self.x = args[0]
+			self.y = args[1]
+		else:
+			self.x = args[0][0]
+			self.y = args[0][1]
+		self.p3l = [self.x,self.y,0]
+	def __add__(self,other):
+		return V2(self.x+other.x,self.y+other.y)
+	def __sub__(self,other):
+		return V2(self.x-other.x,self.y-other.y)
+	def __mul__(self,other):
+		try:
+			return V2(self.x*other.x,self.y*other.y)
+		except(AttributeError):
+			return V2(self.x*other,self.y*other)
+	def __rmul__(self,other):
+		try:
+			return V2(self.x*other.x, self.y*other.y)
+		except(AttributeError):
+			return V2(self.x*other,self.y*other)
+	def __getitem__(self,index):
+		return [self.x,self.y][index]
+	def __repr__(self):
+		return "V2(%.6f,%.6f)"%(self.x,self.y)
+	def rotate(self,th):
+		return V2(self.x*cos(th)-self.y*sin(th), self.x*sin(th)+self.y*cos(th))
+	def rotate90(self):
+		return V2(-self.y,self.x)
+	def rotate_p(self,b,th):
+		return b + (self-b).rotate(th)
+	def magnitude(self):
+		return sqrt(self.x*self.x + self.y*self.y)
+	def normalized(self):
+		return self*(1./self.magnitude())
+	def dot(self,other):
+		return self.x*other.x + self.y*other.y
+	def cross(self,other):
+		return self.x*other.y - self.y*other.x
+	def angle_between(self,other):
+		#unsigned angle between two vectors
+		c = self.cross(other)
+		return atan2(c,self.dot(other))
+	def projected_onto(self,other):
+		return ((self.dot(other))/(other.dot(other)))*other
+	def projected_orthogonal_to(self,other):
+		return self - self.projected_onto(other)
+
+	def close(self,other,tol=1e-6):
+		return (abs(self.x-other.x)<tol) and (abs(self.y-other.y)<tol)
+	def p3lz(self,z):
+		return [self.x,self.y,z]
+
+# a few helper functions
+def line(p1,p2,layer,bridge_w=0,cut_w=0):
+	d = p2-p1; dl = d.magnitude()
+	if dl==0:
+		return None
+	dn = d.normalized()
+	if bridge_w==0 or cut_w==0: 
+		rs.CurrentLayer(layer)
+		return rs.AddLine(p1.p3l, p2.p3l)
+	else:
+		rs.CurrentLayer(layer)
+		output = []; dist = bridge_w
+		ds = []
+		while dist < dl-2*bridge_w:#-cut_w:
+			ds.append((dist, dist+cut_w))
+			#print bridge_w, (p1+dist*dn).p3l , (p1+(dist+bridge_w)*dn).p3l
+			dist += cut_w+bridge_w
+		#leftover = dl-bridge_w-cut_w - dist + cut_w+bridge_w
+		leftover = dl-bridge_w - dist + cut_w+bridge_w
+		for pair in ds:
+			output.append(rs.AddLine( (p1+(pair[0] + leftover/2)*dn).p3l , (p1+(pair[1]+ leftover/2)*dn).p3l) )
+
+		return output
+def circle(c,d,layer):
+	rs.CurrentLayer(layer)
+	return rs.AddCircle(c.p3l, .5*d)
+def arc(c,d,th1,th2,layer):
+	rs.CurrentLayer(layer)
+	p1 = c + d/2*V2(cos(pi/180.*th1),sin(pi/180.*th1))
+	p2 = c + d/2*V2(cos(pi/180.*th2),sin(pi/180.*th2))
+	pm = c + d/2*V2(cos(pi/180.*(th1+th2)/2),sin(pi/180.*(th1+th2)/2))
+	return rs.AddArc3Pt(p1.p3l,p2.p3l,pm.p3l)
+def filleted_hex(c,R,r,layer):
+	crvs = []
+	x = r/sqrt(3)
+	for i in range(6):
+		v0 = R*V2(cos(i*2*pi/6),sin(i*2*pi/6))
+		v1 = R*V2(cos((i+1)*2*pi/6),sin((i+1)*2*pi/6))
+		d = (v1 - v0).normalized()
+		crvs.append( line( c+v0 + x*d, c+v1 - x*d, layer) )
+		crvs.append( arc( c+v0-2*x*v0.normalized(),2*r,-30+i*60,30+i*60, layer) )
+	return crvs
+
+
+
+
+
+
+#main
+def main():
+	rs.AddLayer('magnets_a',(255,0,0))
+	rs.AddLayer('magnets_b',(0,255,255))
+	rs.AddLayer('holes',(0,255,0))
+	rs.AddLayer('coils',(0,0,255))
+	rs.AddLayer('frame',(255,0,255))
+
+	mag_d = 3.3 #mm, diameter of magnets, as cut by laser
+	hole_d = 6 #mm, diameter of air hole
+	s = 6 #mm, hex lattice side length (2xmag_d?)
+	s32 = s*sqrt(3)/2.
+	frame_inner = 60 #mm, radius / side length of inner hex of frame 
+	frame_inner_fillet = 10 #mm, fillet radius
+	frame_outer = 80 #mm, radius / side length of outer hex of frame 
+	frame_outer_fillet = 20 #mm, fillet radius
+	frame_bolt_d = 4.1 #mm, diameter of bolt holes
+
+	wire_pitch = 2*.088 #mm, pitch, .088 = measured diameter (.080) + .008 mm slop (10% applied)
+	N = 19 #number of turns, must be odd
+	Nr = 4 #number of radial layers in the hex lattice
+	lead_length = 20
+
+	#make frame
+	frame = []
+	frame += filleted_hex(V2(0,0), frame_inner, frame_inner_fillet, 'frame')
+	frame += filleted_hex(V2(0,0), frame_outer, frame_outer_fillet, 'frame')
+	for i in range(6):
+		v0 = .5*(frame_inner+frame_outer)*V2(cos(i*2*pi/6),sin(i*2*pi/6))
+		v1 = .5*(frame_inner+frame_outer)*V2(cos((i+1)*2*pi/6),sin((i+1)*2*pi/6))
+		frame += [
+			circle(v0, frame_bolt_d, 'frame'),
+			circle(.5*(v0+v1), frame_bolt_d, 'frame'),
+			]
+
+	#for each of the (2*Nr-1)*(Nr) points in the grid, what are the starting and ending angles
+	coil_params=[
+		[(90,330), 		(150,30),		(210,360+90),	(270,360+30),	(210,90),	(270,30),		(210,360+90), (150,270)],
+		[(90,330), 		(270,360+150),	(330,450),		(270,150),		(330,90),	(270,360+150),	(330,360+90), (150,270)],
+		[(210,330),		(360+150,270), 	(330,450),		(270,150),		(330,90),	(270,360+150),	(330,360+90), (150,270)],
+		[(360+210,330),	(150,360+30),	(360+210,330),	(270,150),		(330,90),	(270,360+150),	(330,360+90), (150,270)],
+		]
+
+	#make magnet grid, air holes, and coils
+	crvs = [];
+	crvs += [circle(V2(0,0),mag_d,'magnets_a')]
+	for i in range(3): #3-fold angular symmetry
+		vr = V2(cos(i*2*pi/3),sin(i*2*pi/3))
+		vth = V2(cos(i*2*pi/3+pi/2),sin(i*2*pi/3+pi/2))
+		vk = V2(cos((i+1)*2*pi/3),sin((i+1)*2*pi/3))
+		for j in range(Nr+1):
+			for k in range(Nr+1):
+				crvs += [circle(2*s32*vr*j + 2*s32*vk*k + s*vth, hole_d, 'holes')]
+				if j < Nr:
+					crvs += [circle(2*s32*vr*(j+1) + 2*s32*vk*k, mag_d, 'magnets_a')]
+					if k<Nr:
+						crvs += [
+							circle(2*s32*vr*(j+.5) + 2*s32*vk*k + .5*s*vth, mag_d, 'magnets_b')
+						]
+					
+						#coils
+						for l in range(N):
+							dd = (l - (N-1)/2)*wire_pitch
+							crvs += [ arc(2*s32*vr*(j+.5) + 2*s32*vk*k + .5*s*vth, s+dd, coil_params[k][2*j][0]+i*120, coil_params[k][2*j][1]+i*120,'coils' ) ]				
+							if j<Nr-1 or k>0:
+								crvs += [ arc(2*s32*vr*(j+1) + 2*s32*vk*k, s+dd, coil_params[k][2*j+1][0]+i*120, coil_params[k][2*j+1][1]+i*120,'coils' ) ]
+
+		#make traverses
+		for l in range(N):
+			dd = (l - (N-1)/2)*wire_pitch
+			crvs += [ arc(2*s32*(vr+vk)*Nr, s+dd, 270+i*120, 180+i*120,'coils' ) ]
+			crvs += [ arc(2*s32*vr*(Nr-1) + 2*s32*Nr*vk, s+dd, 270+i*120, 360+i*120,'coils' ) ]
+			if l<N-1:
+				crvs += [ arc(2*s32*vr*(Nr-.5) + 2*s32*Nr*vk - .25*wire_pitch*vr, s*(sqrt(3)-1)+dd+.5*wire_pitch, 180+i*120, 0+i*120,'coils' ) ]
+		#make leads
+		v0 = 2*s32*vr*(Nr-.5) + 2*s32*Nr*vk - .25*wire_pitch*vr
+		r0 = .5*(s*(sqrt(3)-1) - N/2.*wire_pitch)*vr
+		r1 = .5*(s*(sqrt(3)-1) + N/2.*wire_pitch)*vr
+		crvs += [
+			line( v0-r0, v0-r0+lead_length*vth, 'coils' ),
+			line( v0+r1, v0+r1+lead_length*vth, 'coils' ),
+		]
+
+if __name__ == '__main__':
+	main()
\ No newline at end of file
diff --git a/script/2018.12.7-hex-speaker.py b/script/2018.12.7-hex-speaker.py
index 90c692e5384fdb4e6f527c07fdb063359f7de459..322b48478beda1b47f8a6c809c8b6bdc1d988566 100644
--- a/script/2018.12.7-hex-speaker.py
+++ b/script/2018.12.7-hex-speaker.py
@@ -94,30 +94,6 @@ def arc(c,d,th1,th2,layer):
 	return rs.AddArc3Pt(p1.p3l,p2.p3l,pm.p3l)
 
 
-def make_rectangular_spiral(x,y,h,w,R,pitch,N):
-	rs.CurrentLayer('coil')
-	r = R
-	hw = w/2; hh = h/2
-	crvs = [ ]
-	for i in range(N):
-		#r -= pitch/2
-		r2 = r*(1-1/sqrt(2))
-		crvs.append( line( V2(-hw+(i+0)*pitch,hh-r), V2(-hw+(i+.5)*pitch,-hh+r), 'coil' ) )
-		crvs.append( rs.AddArc3Pt( [-hw+(i+.5)*pitch,-hh+r,0], [-hw+r,-hh+(i+.5)*pitch,0], [-hw+r2+(i+.5)*pitch/sqrt(2),-hh+r2+(i+.5)*pitch/sqrt(2),0] ) )
-		crvs.append( line(V2(-hw+r,-hh+(i+.5)*pitch), V2(hw-r,-hh+(i+.5)*pitch), 'coil' ) )
-		crvs.append( rs.AddArc3Pt( [hw-r,-hh+(i+.5)*pitch,0], [hw-(i+.5)*pitch,-hh+r,0], [hw-r2-(i+.5)*pitch/sqrt(2),-hh+r2+(i+.5)*pitch/sqrt(2),0] ) )
-		crvs.append( line( V2(hw-(i+.5)*pitch,-hh+r), V2(hw-(i+1)*pitch,hh-r), 'coil' ) )
-		if i<N-1:
-			crvs.append( rs.AddArc3Pt( [hw-(i+1)*pitch,hh-r,0], [hw-r,hh-(i+1)*pitch,0], [hw-r2-(i+1)*pitch/sqrt(2),hh-r2-(i+1)*pitch/sqrt(2),0] ) )
-			crvs.append( line(V2(hw-r,hh-(i+1)*pitch), V2(-hw+r,hh-(i+1.)*pitch), 'coil' ) )
-			crvs.append( rs.AddArc3Pt( [-hw+r,hh-(i+1.)*pitch,0], [-hw+(i+1.)*pitch,hh-r,0], [-hw+r2+(i+1.)*pitch/sqrt(2),hh-r2-(i+1.)*pitch/sqrt(2),0] ) )
-	#crvs.append( line( V2(hw-(N+0)*pitch,-hh+r), V2(hw-(N+.25)*pitch,hh-r), 'coil' ) )
-	result = rs.JoinCurves(crvs)
-	rs.DeleteObjects(crvs)
-	rs.MoveObjects(result,[x,y,0])
-	return result
-
-
 def main():
 	rs.AddLayer('magnets',(255,0,0))
 	rs.AddLayer('holes',(0,255,0))