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Energy Harvesting Properties of Electrospun Nanofibers

Jian Fang and Tong Lin

Chapter 1

Electrospinning: an advanced nanofiber
production technology

Haitao Niu, Hua Zhou and Hongxia Wang

The electrospinning process has been regarded as one of the most facile and versatile
techniques to prepare nanoscale fiber materials. Electrospinning technology has
undergone enormous progress since its appearance in the 1930s. This chapter briefly
reviews the recent improvements on electrospinning technologies and summarizes
the state-of-the-art electrospinning setups. Thus, this chapter will be a valuable
resource for scientists in the electrospinning field and engineers in related areas.

1.1 Introduction to electrospinning

Nanomaterials are materials that have at least one dimension below 100 nm, e.g.
nanoparticles, nanorods, nanowires, nanotubes, and nanosheets. Nanomaterials
have attracted considerable attention in the past decades owing to their excellent
properties, outstanding performances, and wide applications. As the dimension of a
material decreases, the percentage of atoms on the surface and the surface-to-volume
ratio increase remarkably [1]. For a 100 nm nanoparticle, less than 0.2% of atoms
are on the surface; meanwhile, 10% of the atoms are on the surface of a 10 nm
nanoparticle and around 90% atoms distribute on the surface of a 2 nm nanoparticle
[2]. The atoms on the nanomaterial surface have more dangling bonds, which make
them very active and tend to bond with adjacent molecules. As a result, nano-
materials, in comparison with their bulk counterparts, often exhibit higher chemical
activity, lower melting points, and higher phase transition pressure and solubility [3].

In the fiber and textile industry, fibers with a diameter less than 1 pm (1000 nm)
are normally defined as nanofibers. In comparison with conventional fibers, these
nanofibers have an enlarged surface area; for instance, the surface area of electro-
spun nanofibers are dozens of times larger than that of conventional fibers
(figure 1.1). Accordingly, the pore size reduces and pore volume increases in
nanofibrous materials. As a result, nanofibers show excellent performance in
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Figure 1.1. Relationship between specific surface area and diameter of different fibers. Reproduced with
permission from Elsevier [11].

many different areas; for example, air/liquid filtration, energy generation and
storage, biomedical and tissue engineering, sensors and catalysts, drug delivery,
and nanocomposites [4-10].

Nanofibers can be fabricated by numerous approaches, such as phase separation
[12], self-assembly [13, 14], template synthesis [15], melt-blowing [16], flash spinning
[17], bicomponent spinning [18], and electrospinning [19, 20]. Among all the existing
nanofiber-fabricating approaches, electrospinning technology is the most investi-
gated and widely used because of its high efficiency, cost-effectiveness, and great
adaptability. Especially, electrospinning technology is easy to scale up and has high
commercialization potential.

1.1.1 Electrospinning history

In as early as 1600, William Gilbert first reported the observation about a spherical
water drop on a dry surface being drawn and deformed into a cone under the
influence of electrostatic force [21]. Nearly 300 years after Gilbert’s observation,
Formhal patented in the 1930s a setup to produce continuous fine fibers [22, 23]; this
is regarded as the real beginning of electrospinning technology. In the 1960s, Geffrey
Taylor investigated the shape of a cone formed by a fluid droplet under the action of
an electric field, and reported the existence of a conical angle of 49.3° [24]. This angle
was later named the ‘“Taylor cone’ and it has been widely used to explain electro-
spinning and electrospraying. In addition, Taylor [25] proposed that a jet in a
parallel electric field experiences two critical instabilities: Rayleigh instability and
bending instability. His works greatly improved the understandings of electro-
spinning and promoted its development.

Henceforth, there were no noteworthy improvements on electrospinning technol-
ogy, until Doshi and Reneker [19, 26] reported their work on using this technique to

1-2



Energy Harvesting Properties of Electrospun Nanofibers

fabricate nanostructured materials. Since then, electrospinning technology and
electrospun nanofibers have begun to draw more and more interest from both
academic and industrial fields. Tremendous efforts have been devoted to the
development of electrospinning technology, finding the fiber-making mechanism,
characterization of nanofibers, and exploring novel applications. Large-scale
production and commercialization of electrospun nanofibers have been accom-
plished. Electrospinning technology and processes have made fast advancement in
recent years to meet the ever-increasing demands on nanofibers for various
applications.

1.1.2 Basic apparatus

The conventional electrospinning setup (figure 1.2) comprises a capillary nozzle
connected to a high-voltage DC power supply, a grounded collector, and a solution
reservoir to supply solution [27]. This type of electrospinning setup works based on
the capillary effect: the solution is transported to the tip of a thin nozzle and jet
initiation happens at the nozzle tip. In the past two decades, many advancements
have been made to control nanofiber collection, and various fiber-generating designs
including needleless, near-field, melt electrospinning, yarn electrospinning, and
multicomponent electrospinning designs, have been developed. An overview of
this advanced fiber-making technology and state-of-the-art progress are reviewed in
this chapter.

An electrospinning process can be briefly described as follows. Spinning fluid is
fed to the capillary tube (usually a syringe needle) from a fluid reservoir. When a
high voltage is applied to the needle (typically around 10 kV-20 kV), a high electric
field is formed between the needle and collector (grounded or oppositely charged),
which applies electrostatic force on the fluid droplet. Electrospinning fluid is
described as a ‘leaky dielectric’ that has sufficient conductivity for the induced
charges to quickly accumulate on the free surface in a short time scale or acts as a
dielectric [28]. The repulsion between charges on the free surface of fluid droplet
works against surface tension and fluid viscosity to deform the droplet into a cone

Metal collector

-

Figure 1.2. Illustration of typical electrospinning process. Reproduced with permission from Elsevier [27].

1-3



Energy Harvesting Properties of Electrospun Nanofibers

shape (Taylor cone) with increasing applied voltage (higher electric field intensity)
[24]. When the applied voltage exceeds a critical value, the electrostatic force can
overcome fluid surface tension, and jet initiation proceeds from the vertex of the
Taylor cone. The generated fluid jets fly to the grounded collector under the action
of electrostatic force. During the flying process, solvent evaporation from the fluid
jet results in dry nanofibers depositing on the collector. Although the electrospinning
process is relatively easy to implement, it is very complex considering the co-
existence and combined action of Coulombic force, gravity, fluid surface tension,
and viscosity during fiber formation.

1.2 Electrospinning basis
1.2.1 Mechanism of electrospinning process

The fiber formation process during electrospinning can be divided into three stages:
jet initiation, jet whipping instability, and fiber deposition [29]. As the first stage of
electrospinning, jet initiation has been widely studied [30-32]. In the first milli-
seconds, the solution droplet begins to transform into a conical shape by the high
electric potential. The round solution droplet tip becomes more and more
sharp. Finally, a jet is emitted from the tip of the cone. Then the cone gradually
changes back to the rounded shape, indicating the system transits from the jet
initiation stage to the electrospinning stage. As long as the solution taken away by
the solution jet is replenished promptly, the electrospinning process can last.

After ejection, the solution jet is straight for a short section (figure 1.3), which
may extend from a few millimeters to several centimeters away from the nozzle tip
along its axis direction. This ejected solution jet carries away electrical charges in the

Figure 1.3. Digital photo of an electrospinning solution jet, including a stable jet and jet whipping stage.
Reproduced with permission from Elsevier [39].
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form of uncompensated ions from the nozzle. Attributed to the effect of charge
repulsion in the solution jet, free charges migrate radially onto the jet surface to
satisfy the equilibrium condition. As a result, electrostatic force induced by the
electric field is applied on the jet surface. The charged fluid jet accelerates under the
action of the electric field, accompanied by the thinning of the fluid jet [31].

After the initial stable stage, the jet enters an instable stage (whipping) under the
influence of the charges carried by the jet, which may involve bending, winding,
spiraling, and looping movements. Many theoretical models have been proposed to
describe this jet instability, and there is a prevalent belief that the jet is continuously
elongated and becomes longer and thinner with continual stretching [33-37]. The
existence of jet instability is due to the action of axisymmetric and nonaxisymmetric
instabilities caused by the perturbations of surface charges. The axisymmetric
instability derives from perturbation of the surface charges along the jet axis direction,
which makes different segments of the jet be under different strengths of electrostatic
force, resulting in an uneven jet. The nonaxisymmetric instability derives from
perturbation of surface charges around the circumference of the jet, which induces
a localized torque around the jet that accounts for the whipping motion. Under the
condition where nonaxisymmetric instability plays the major role of instability during
the electrospinning process, the jet is likely to be stretched uniformly [38]. The solution
jets fly to the collector under electrostatic force, being accompanied by solvent
evaporation, and deposit on the collector as dry fibers at last.

1.2.2 Effects of electrospinning parameters

Electrospinning process, fiber morphology, fibrous structure, and fiber production
rate are governed by a number of parameters, e.g. applied voltage, flow rate, nozzle
diameter, collecting distance, solution properties (e.g. polymer molecular weight,
concentration, electrical conductivity, surface tension, solvent properties), and
ambient conditions (temperature, humidity) (figure 1.4). Although, many of these
electrospinning parameters are interdependent and there are interactions between
them, we can derive a general trend of influences of some parameters on the
electrospinning process.

1.2.2.1 Applied voltage

Applied high voltage is an essential factor in electrospinning, without which jet
initiation does not happen. When the applied voltage is low, the electrostatic force is
insufficient to overcome surface tension of the solution droplet, and as a result, no jet
is stretched out and dripping happens. With increasing applied voltage, the electro-
static force increases, and eventually leads to jet initiation, and the electrospinning
process starts. Generally speaking, the fiber diameter decreases with increasing
voltage, and attributable to the growing stretching force [40, 41]. Applied voltage
plays a far more important role in needleless electrospinning than in nozzle
electrospinning. It can decrease the fiber diameter and increase the fiber production
rate because high voltage can increase the jet number on the free solution surface of
a spinneret and escalate the jet flying speed [42, 43].
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Figure 1.4. Important electrospinning parameters and conditions during the electrospinning process.

1.2.2.2 Collecting distance

In general, an optimum distance for electrospinning should be long enough for fiber
stretching and solvent evaporation. Under the circumstance that applied voltage is
constant, the change of distance between nozzle and collector will affect the electric
field and fiber diameter accordingly. Another important influence of changing
distance is on fiber morphology and structure. The solvent in the solution jet needs
to have sufficient time to evaporate and turn the jets into dry nanofibers. When the
collecting distance is very short, interconnected nanofibers are often collected [42—
44]. This phenomenon happens more frequently in needleless electrospinning due to
instantaneous generation of a large number of solution jets. It has also been found
that interconnected nanofibers collected at a short distance could benefit the
mechanical strength of nanofiber mats with improved and more durable perform-
ance in energy harvesting applications [44].

1.2.2.3 Flow rate

The flow rate of solution in nozzle electrospinning has a direct effect on fiber
production rate: a large flow rate results in a high production rate and a small flow
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rate results in a low production rate. A large flow rate will generally produce coarser
nanofibers [45] because more solution is drawn out at the same time. It has been
proposed that four electrospinning conditions may be observed with the increasing
flow rate: discontinuous, continuous (stable), intermittent, and dripping. When the
solution flow rate exceeds a critical value, the congestion of excess solution at the
nozzle tip can affect the jet formation process, leading to the formation of an
unstable jet, beaded fibers, and other defects, such as branching, splitting, and
flattened fibers [46].

1.2.2.4 Solution properties

Polymer molecular weight has a substantial effect on electrospinning performances.
In general, increasing molecular weight enables the polymer solution to be electro-
spun into uniform fibers at relatively low concentrations because a high molecular
weight induces a large degree of chain entanglement [47]. It was found that polyvinyl
alcohol (PVA) solutions produced fibers with morphologies ranging from beaded
fiber, uniform fiber, to coarse non-uniform fibers with increasing concentration [48].
In another study, PA6 solution produced droplets at 5 wt% concentration, merged
fibers at 15 wt% concentration, and smooth fibers at 25 wt% concentration [49].

When the solution concentration is very low, electrospray happens instead of
electrospinning. At low solution concentrations, electrospinning usually produces
defective fibers (discontinuous, merged, or beaded) because the surface tension of the
solution overcomes the viscoelastic forces and electrostatic drawing force. When the
solution concentration is sufficiently high, the chain entanglement of macromole-
cules is enough to overcome surface tension, and the fiber diameter increases with
the rising concentration as there is more solid content in the solution [47, 50].
However, a too-high concentration makes electrospinning difficult due to high
viscoelasticity [S1], especially for needleless electrospinning that stops jet production
at high solution concentrations. In addition, the critical voltage for electrospinning
may go up when increasing the solution concentration [52]. The minimum solution
concentration to produce smooth nanofibers is dependent on the polymer type,
polymer molecular weight, and solvent used.

The addition of surfactant and salt alters the surface tension and electrical
conductivity of polymer solutions, and their influences on electrospinning may vary
in different conditions. It has been reported that the addition of lithium chloride (LiCl),
sodium nitrate (NaNQ3), sodium chloride (NaCl), and calcium chloride (CaCl,) salts
can increase solution conductivity, thus reducing electrospun PAN fiber diameter (the
reduction is proportional to solution conductivity) [53]. On the contrary, the addition
of salt in PA6 solution was found to increase fiber diameter; this is attributed to the
increase in viscoelastic force within the solution jet [47]. The addition of surfactant can
reduce solution surface tension, and as a result produce thinner nanofibers with better
uniformity [54, 55]. Introducing surfactant (e.g. dodecylbenzene sulfonic acid, tetra-
butylammonium chloride) in the solution could also produce nanofibers with special
morphologies, e.g. tree-like [56] and nano-net morphologies [57].
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1.2.2.5 Temperature and humidity of environment

Electrospun nanofibers normally have smaller fiber diameter with rising environment
temperature during electrospinning because of the declined viscosity and surface
tension of solution [58]. When using a low temperature (200-220 K) to prepare poly
(lactic acid-co-glycolic acid) nanofibers, the porosity of electrospun nanofibers can be
improved by four times because the ice crystals formed at low temperature serve as a
removable void template to create additional pores [59]. Humidity can also affect fiber
diameter and morphology [58, 60, 61]. It has been reported that polystyrene nano-
fibers prepared in a high-humidity environment exhibit porous morphology, because
solvent evaporation from solution jets has a cooling effect and causes moisture
condensation on the fiber surface, leading to breath-figure self-assembly [61].

In the following section of this chapter, state-of-the-art progresses of electro-
spinning techniques and apparatuses will be summarized (figure 1.5), covering
nozzle electrospinning techniques (e.g. multicomponent electrospinning, multinozzle
electrospinning, near-field electrospinning, melt electrospinning), needleless electro-
spinning techniques, and methods of controlled nanofiber deposition (e.g. aligned
nanofibers, nanofiber yarns).

1.3 Nozzle electrospinning

In a nozzle spinneret-based electrospinning process, a spinning solution is trans-
ported to fiber electrospinning sites through a capillary channel or multiple channels.

Electrospinning technologies

|
[

Fiber collection Fiber generation

Selective Nozzle Needleless
deposition electrospinning electrospinning
Aligned Single Multi- Stationary Rotatory
nanofibers component component spinneret spinneret
Nanofiber yarn Multi-nozzle fiserfiaic skl Magnetic field
electrospinning spinneret
Gas enhanced Portable Gas assisted Centrifugal

apparatus force
Solution Melt

Figure 1.5. A summary of different electrospinning techniques.
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This kind of electrospinning technique has many unique features, e.g. enabling
incessant solution feeding and continuous electrospinning, the enclosed system
avoiding unnecessary evaporation and maintaining the solution stability, tunable
capillary diameter with easily controlled fiber diameter, and producing uniform
nanofibers.

1.3.1 Single-component electrospinning

Single-component electrospinning refers to the circumstance that spinning solution
is supplied through a single capillary nozzle, and jet initiation occurs at the nozzle tip
when high voltage is applied. Although positive high voltage is generally used in
electrospinning, negative high voltage has also been applied for making electrospun
nanofibers. Tong et al investigated the effect of high voltage polarity on fiber quality
of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanofibers. They noticed that
PHBY fiber diameter increased with increasing applied voltage for positive voltage
electrospinning, but decreased for negative electrospinning; however, water contact
angle, tensile strength, and stiffness of the nanofibers were barely affected by the
polarity of applied voltage [54]. In another work of electrospinning zein/soy protein
isolate (95/5), the diameter of positive electrospun nanofibers was smaller than that
of negative electrospun nanofibers. With the increasing applied voltage, positive
electrospinning produced thinner nanofibers while negative electrospinning did not
show any clear effect on the fiber diameter [62].

In addition to the conventional setup where high voltage is connected to the
nozzle spinneret, high voltage can also be connected to the collector to perform
electrospinning. This works based on the inductive effect produced from the high
potential applied by the collector. It has been found that when high voltage is
connected to the collector and the nozzle is grounded, electrospinning proceeds
successfully but requires higher critical voltage to start the spinning process, and
results in enlarged fiber diameter and lower nanofiber production rate [63].

Direct current (DC) voltage is usually used for electrospinning when the high
voltage power supply has either a positive high voltage output or a negative output.
Alternating current (AC) voltage can not only implement electrospraying/electro-
spinning, but also has better controllability of fiber deposition. It has been found
that AC electrospinning of poly(ethylene oxide) (PEO) significantly subsided the
whipping phenomenon with a high degree of fiber alignment [64]. Unlike the
conventional DC electrospinning in which a funnel shaped nanofiber mesh is
formed, a visible thread can be observed emerging downstream from the needle in
the AC electrospinning process. Furthermore, the fibrous thread is not attracted by
the grounded electrode, and it can be easily deflected and collected [65].

1.3.2 Multicomponent electrospinning

In the textile industry, a single fiber with two components distributed in the radial
direction, for example core-sheath and islands-in-the-sea structures, can find many
unique applications. Although it is possible to obtain core-sheath-structured nano-
fibers induced by phase separation [66] or emulsion electrospinning [67, 68], normal
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single-component electrospinning usually produces an electrospun nanofiber with-
out an obvious core-sheath structure. This is attributable to the fact that two
solutions inside the nozzle (diameter < 1 mm) have small Reynolds numbers. They
can be identified as laminar flows and there is no mixing between them; as a result,
they maintain their initial injection states [69]. Because of this, it is possible to
conduct bicomponent electrospinning and fabricate nanofibers with tunable com-
position in the radial direction [70].

In a core-sheath electrospinning spinneret, an inner nozzle of small diameter and
an outer nozzle of large diameter are positioned axially with the inner nozzle slightly
protruding out of the outer nozzle. During the electrospinning process, the sheath
solution is fed into the outer nozzle and the core solution is fed into the inner nozzle.
At the nozzle tip, the outer solution forms a thin sheath that enclose the inner
solution. Under the action of electrostatic force, both solutions are pulled into a
compound Taylor cone of core—sheath structure. Then the core—sheath solution jet is
stretched into thin core-sheath fibers by the electric field and deposited on the
collector [70-72]. When the inner solution is replaced with a liquid (usually octane),
hollow nanofibers (figure 1.6(a) and (b)) can be obtained after removing the liquid
from the resulting core—sheath electrospun nanofibers [71]. Thanks to core—sheath
electrospinning, many unspinnable materials, e.g. polydimethylsiloxane (PDMS)
[73] and medicine [74], can be successfully processed into ultrathin fibers.

When two components distribute inside the bicomponent electrospinning nozzle
in a side-by-side way, the fabricated nanofibers have a side-by-side structure [75].
Interestingly, self-crimped polyacrylonitrile nanofibers (figure 1.7) were produced
when the polyurethane component in polyacrylonitrile/polyurethane side-by-side
nanofibers was removed; this could provide an efficient way to tailor the structure of
electrospun nanofibers [76].

Multicomponent nanofibers (figure 1.8) can be obtained via simply increasing the
number of components inside the spinneret [77]. However, further increasing the
component number to produce an islands-in-the-sea structure may be difficult

i a itic syringe\wp/immp’)‘
- — Mineral oil
needle —‘: (
V] O
] /

Figure 1.6. (a) Core-sheath electrospinning setup, and (b) SEM images of electrospun hollow nanofibers.
Reproduced with permission from Royal Society of Chemistry [71].
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Figure 1.7. (a) Side-by-side electrospinning setup, and (b) SEM image of side-by-side bicomponent nanofibers
with one component removed. Reproduced with permission from Wiley [76].
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Figure 1.8. Schematic drawing of a multicompartmental electrospinning setup and prepared fibers.
Reproduced with permission from American Chemical Society [77].

because the diameter of the nozzle is normally small (<1 mm); this makes it
impractical to further prepare more complex spinneret, and demands large pressure
to feed all the components evenly.

1.3.3 Multinozzle and porous spinneret

The single nozzle electrospinning generally has a low nanofiber productivity of
<0.3 g7' h™! per nozzle, which is far below the requirement for industrial nanofiber
production. A direct and practical way of improving the nanofiber production rate is
to increase the number of nozzles for electrospinning, namely by employing
multinozzle electrospinning [78-81]. However, there is strong electrostatic repulsion
between the jets in multinozzle electrospinning, which can easily affect the electro-
spinning process, causing poor fiber quality and an uneven fibrous membrane
(figure 1.9(a)). Different nozzle position arrangements have been developed to
reduce electrostatic repulsion and improve multinozzle electrospinning perform-
ances [82]. An auxiliary electrode can interfere with the electric field in multinozzle
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Figure 1.9. (a) A multinozzle electrospinning setup. Reproduced with permission from Elsevier [82].
(b) Cylindrical auxiliary electrode-assisted multinozzle electrospinning. Reproduced with permission from
Elsevier [85].

Figure 1.10. Horizontal tube electrospinning. Reproduced with permission from Elsevier [86].

electrospinning and improve its distribution (figure 1.9(b)); this improves electro-
spinning performances [83-85]. The presence of the external electrode could shrink
the fiber deposition area and improve the fiber production rate.

Using a cylindrical tube with channels throughout the tube wall is an effective
way to increase the solution channel number, thus increasing fiber production rate
[86, 87]. It is still based on the capillary effect, which transports the spinning solution
from inside of the tube to the outside, and the electrospinning happens on the tube
surface. Tube electrospinning exhibits improved electrospinning productivity in
comparison with single needle electrospinning, attributable to numerous nozzle
number (figure 1.10). Although it is possible to improve the nanofiber production
rate easily by increasing the tube length and number of channels, the gap between
adjacent channels cannot be too small because strong jet interference can result in a
nanofiber belt instead of a fiber web [86].

In electrospinning, ejected solution jet carries a large amount of charges, which
drive the jet stretching and fiber deposition on the collector. The interference among
solution jets in multijet electrospinning cannot be completely eliminated. In
addition, solution and electrospinning conditions (e.g. solution type, solution
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concentration, applied voltage) influence the electrostatic repulsion between ejected
jets, and it is difficult to find an optimized distance between solution channels that
can be adaptable to all electrospinning circumstances. If not resolved successfully,
the electrostatic repulsion problem will be a serious barrier to the industrialization of
multijet electrospinning.

1.3.4 Near-field electrospinning

Near-field electrospinning can be regarded as a technique of integrating nano-
lithography [88, 89] and electrospinning, and is a good example of interdisciplinary
technological convergence. In a normal electrospinning system, the collecting
distance is usually over 5 cm and the whipping stability is evident. Near-field
electrospinning working on a much lower applied voltage can precisely control
electrospun fiber deposition [90, 91]. In near-field electrospinning, the jet whipping
instability is eliminated or greatly restricted due to a very short collecting distance
(<5 cm). When a collector is controlled by a computer program with precisely
positioned movement, the collected fibers can form predesigned patterns. Near-field
electrospinning also has a few demerits; for example, it produces fibers with a much
larger diameter than those in conventional electrospinning due to the insufficient jet
stretching, and it has a small nanofiber production rate. The differences between
near-field electrospinning and conventional electrospinning are presented in
table 1.1.

Figure 1.11(a) illustrates a near-field electrospinning process, and the SEM image
in figure 1.11(b) shows a collected nanofiber. The nanofibers fabricated by near-field
electrospinning has a narrower diameter distribution than those fabricated by the
conventional electrospinning process. This technique greatly expands the applica-
tion fields of the electrospun nanofiber with ordered structures, e.g. into the fields of
nanogenerators, tissue engineering, wearable sensors, and microelectromechanical
systems [93-97].

Because of the precise fiber deposition in near-field electrospinning, it is feasible to
fabricate a patterned 3D fibrous structure [95]. At microscale (figure 1.12), these
fibers prepared by near-field electrospinning show precise deposition and they
formed a well-organized 3D fibrous structure.

Table 1.1. Comparison of conventional electrospinning and near-field electrospinning [92].

Conventional electrospinning Near-field electrospinning
Material Solution, polymer melt Solution, polymer melt
Applied voltage (kV) 10-30 0.2-12
Collecting distance (mm) 50-500 0.5-50

Fiber diameter (pm) 0.01-1 0.05-30
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Figure 1.11. (a) Schematic diagram of near-field electrospinning process, and (b) SEM image of a single
polyvinylidene fluoride nanofiber formed across two electrodes. Reproduced with permission from American
Chemical Society [93].

Figure 1.12. (a) SEM images of deposited poly(2-ethyl-2-oxazoline) fibrous structures. Reproduced with
permission from Elsevier [98].
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1.3.5 Gas-enhanced electrospinning

Applying auxiliary gas to an electrospinning process can diminish the influence of
Coulombic repulsion force in multinozzle electrospinning [99]. As a result, gas-en-
hanced electrospinning can produce thinner nanofibers [100-102], improve nanofiber
collection [103-105], and increase nanofiber production rate [106]. It has been found that
the application of nitrogen gas containing solvent vapor can help to eliminate the
whipping motion of the solution jet and lead to the collection of highly aligned
nanofibers on the fast-rotating cylindrical collector [103]. The Zetta electrospinning
system was developed in another work; it can process both polymer solution and
polymer melt into nanofibers. Figure 1.13 shows that Zetta electrospinning uses airflow
to enhance electrospinning with a much-improved nanofiber production rate [106].

When preparing thick nanofiber membranes by extending electrospinning time, it
is very easy to build up electrostatic charges on the collector because polymer
nanofibers are electrically nonconductive. These accumulated electrostatic charges
can weaken the electric field, prevent fiber deposition, and produce coarser fibers.
Solvent accumulation inside the nanofibrous membrane is another problem, which,
if not removed rapidly, can cause jointed nanofibers or even film after a long period
of electrospinning. Gas-enhanced electrospinning can efficiently solve these prob-
lems [107]. Airflow has also been applied to assist melt electrospinning (figure 1.14),
resulting in 10% thinner polylactic acid fibers compared to fibers produced by un-
assisted melt electrospinning [100].

1.3.6 Melt electrospinning

Melt electrospinning technology was reported in as early as 1936 in a patent filed by
Charles Norton from the Massachusetts Institute of Technology [108]. In spite of its
early appearance, melt electrospinning had not drawn as much attention as solution
electrospinning because it needs to maintain an elevated temperature during the
electrospinning process and polymer melts have low conductivity and high viscosity.
In recent developments, various heating methods have been applied in melt
electrospinning, e.g. electrical heating [109, 110], air heating [111, 112], circulating
fluid heating [113], and laser heating [114, 115]. Melt electrospinning does not
involve any solvent and is an environmentally friendly process, which makes it

Nanofiber

Air flow

Air blower N

Figure 1.13. Zetta electrospinning process. Reproduced with permission from American Chemical Society
[106].
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Molten

Polymer Specific

Figure 1.14. (a) Schematic diagram of gas-enhanced melt electrospinning; SEM images of fabricated polylactic
acid fibers (b) without a gas-assisted system and (c) with a gas-assisted system. Reproduced with permission
from Elsevier [100].

favorable for various applications, e.g. filtration [116], sensors [117], textiles [118],
and especially biomedical applications [113, 119-121]. Conversely, solution electro-
spinning uses flammable, toxic solvents; its operation can cause environmental issues
and hazard risks, which indicate that melt electrospinning could play a more
important role in nanofiber production and applications.

1.4 Needleless electrospinning

In spite of great efforts to improve electrospinning productivity, conventional
capillary electrospinning can only produce a very limited quantity of nanofibers,
and is unable to meet the ever-increasing demand for industrial applications.
Needleless electrospinning offers a solution to this problem. Needleless electro-
spinning (also referred to as free surface electrospinning) is a special type of
electrospinning. Instead of forming a jet from a capillary tip, needleless electro-
spinning forms a large number of solution jets directly from an open liquid surface.
Needleless concept appeared in as early as 2004 [122], when Yarin reported upward
needleless electrospinning of nanofibers from a two-layer system. Since then, this
technology has attracted tremendous interests attributable to its ability for large-
scale nanofiber production.

During a needleless electrospinning process, numerous jets are generated instan-
taneously from the spinneret surface, exempt from influences of the capillary effect
[123]. The electrospinning liquid (electrically conductive) on the spinneret surface
self-organizes on a mesoscopic scale to form waves, and jet initiation happens from
wave crests when the applied voltage exceeds a critical value. The electric field
intensity profile around the spinneret and in the electrospinning zone play a far more
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important role in needleless electrospinning than in needle electrospinning, in terms
of jet initiation, jet stretching, nanofiber productivity, and morphology.

Most of the works on needleless electrospinning have been focusing on under-
standing how spinneret design affects electrospinning performances and nanofiber
production. It has been established that a large curvature can generate a high-
intensity electric field, which increases fiber production rate. Based on their motility,
needleless electrospinning spinnerets can be classified into the following categories:
stationary needleless spinneret, linearly moving needleless spinneret, and rotatory
needleless spinneret. In addition to these three types of needleless spinnerets, there
are some other needleless electrospinning designs working on different jet initiation
mechanisms.

1.4.1 Stationary needleless spinnerets

Stationary needleless spinnerets refer to those spinnerets that do not move during the
electrospinning process while the spinning solution is fed into them or the spinnerets
work in batch mode. This kind of electrospinning setup is relatively simple and the
electrospinning processes can be implemented with minimum efforts. Spinnerets in
this category include, wire, twisted wire, conical wire, bowl, sharp edge, cylinder,
slit, curved slot, stepped pyramid, and cleft (shown in table 1.2).

1.4.2 Rotatory needleless spinnerets

During electrospinning using stationary spinnerets, there is no effective control over
the solution distribution on the spinneret surface. As a result, electrospinning
conditions and fibrous membrane uniformity may vary as electrospinning continues.
When rotatory needleless spinnerets are used for electrospinning, the spinnerets can
spread the solution evenly onto their surface through rotation and ensure continuous
electrospinning. The solution layer thickness can be easily regulated by the rotating
speed with improved electrospinning stability and nanofiber uniformity. Jet initia-
tion in needleless electrospinning can be summarized in four stages. (1) A thin
solution layer is formed on the spinneret surface because of spinneret rotation. (2)
Rotation causes perturbations on the solution layer, inducing the formation of
conical spikes. (3) When high voltage is applied, these spikes centralize the electric
force, intensifying perturbation to form Taylor cones. (4) Solution jets are stretched
out from Taylor cones, resulting in nanofiber formation. Table 1.3 lists the common
rotatory spinnerets and fiber-generating sites, including cylinder (roller), disc, ball,
coil, cone, and wire frame.

With the help of finite element analysis (FEA), the electric field intensity profile in
the electrospinning area can be simulated and used for optimizing spinneret design
[42, 136, 137]. It has been found that an auxiliary structure on the primary spinneret
structure can centralize the electric field around with increased intensity. Therefore,
auxiliary structures were introduced onto common needleless spinnerets to enhance
electric field strength and improve electrospinning performances; these structures
include the Von Koch curve fractal structure [142], needles on a disc or helix slice
[143, 144], barbed roller [145], probed cylinder [146], and threaded rod [147].
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1.4.3 Linear needleless spinneret

The jet initiation sites on linear needleless spinnerets are distributed in parallel to the
linear direction of the spinnerets, and a typical design is wire electrospinning.
Although the wire spinneret remains stationary, there is a solution-feeding device
moving linearly along the wire to feed spinning solution evenly along the wire, thus
ensuring continuous electrospinning. In another design, a horizontal bead chain was
used to produce nanofibers, and the chain moved in parallel to the flat collector. The
beads, as an auxiliary structure, can centralize the electric field and improve
electrospinning performances [148].

The applied voltage needed to start jet initiation and electrospinning in needleless
electrospinning is usually much higher than that in conventional needle electro-
spinning because it requires a much higher electrostatic force to stretch out a
solution jet from the small curvature surface of the needleless spinneret [42]. In a
recent work of electro-aerodynamic field aided needleless electrospinning, two
auxiliary forces of additional electric field and airflow were used to assist the
electrospinning process (figure 1.15). The high-intensity electric field was generated
between the slot and the inductive electrode (5 cm distance). In this way, electro-
spinning ran at a voltage equivalent to that in needle electrospinning (e.g. 10-30 kV)
[149]. The auxiliary airflow diverted the nanofibers away from the inductive
electrodes and directly to the collector.

With the fast advances of electrospinning technology, commercialized needleless
electrospinning technologies are already on the market (e.g. technologies produced
by Elmarco, Fanavaran Nano-meghyas, Revolution Fibers, SPUR Company,
Shanghai Yuntong Nanomaterials Technology Co., Ltd, Stellenbosch Nanofiber
Company, INOVENSO). Such technologies produce nanofibers based on different
mechanisms but all have a large-scale nanofiber production capacity.

1.4.4 Magnetic field-assisted needleless electrospinning

Apart from the above-mentioned needleless spinnerets that relying on specific
geometric shapes to conduct electrospinning, there are also a number of needleless
electrospinning technologies that utilize additional forces such as gas blowing, a
magnetic field, or centrifugal force to implement electrospinning.

Collector ——= ol
Grounding |
Inductive €
electrode —g/—— s
Electrode
support ¥
Airflow ™ Airflow

Figure 1.15. Schematic drawing of electro-aerodynamic needleless spinning setup and its electrospinning
process (HV means high voltage). Reproduced with permission from IOP Publishing [149].
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Figure 1.16. (a) Schematic drawing of magnetic field-assisted needleless electrospinning. (b) Spikes formed on
the silicone oil-based magnetic fluid under the action of a permanent magnet. Reproduced with permission
from Elsevier [122].

Yarin and Zussman [122] reported an electrospinning technique that used a
magnetic field to initiate the jet formation (figure 1.16). The spinning liquid
comprised two layers: a bottom ferromagnetic fluid layer, and a top polymer
solution layer. When an external magnetic field was applied to the ferromagnetic
fluid and an electric field applied to the polymer solution, the ferromagnetic fluid
triggered the formation of steady vertical spikes, which perturbed at the interlayer
interface and solution layer. When the applied voltage was high enough, solution jets
were stretched out from the spikes.

1.4.5 Gas-assisted needleless electrospinning

Because of low cost and high safety, airflow has been used to assist jet initiation in
electrospinning. A gas-jet electrospinning technique (also referred to as bubble
electrospinning) was developed in 2007 [150]; it used gas to create bubbles on the
liquid surface, which increased surface curvature and facilitated jet initiation. Since
the introduction of this, gas-initiated electrospinning has attracted great interest
[151, 152]. In nozzle electrospinning [153] and needleless electrospinning [154], high-
speed gas can improve nanofiber production rate because airflow can enhance
solution jet stretching, thus facilitating jet initiation. In addition to the gas-assisted
solution electrospinning, melt electrospinning can also benefit from additional
airflow [100, 155].

1.4.6 Centrifugal force-assisted needleless electrospinning

Centrifugal spinning has been developed over many years, and was originally
extensively used for producing glass fibers [156]. Recently, centrifugal spinning has
been applied to prepare nanofibers [157-159]. Many parameters in centrifugal
electrospinning, e.g. voltage, spinneret rotation speed, solution feed rate, distance
between spinning head and collector, and solution concentration, can affect the
electrospinning process and nanofiber quality. The combination of mechanical
rotation and electric field makes it very effective in fabricating aligned nanofibers
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Figure 1.17. (a) Schematic drawing and (b) digital photo of centrifugal electrospinning process; (c) SEM image
of centrifugal poly(vinylidene fluoride) (PVDF) fibers deposited between two grounded electrodes.
Reproduced with permission from Royal Society of Chemistry [162].

(figure 1.17) [160—162]. The combination of centrifugal spinning and electrospinning
has many advantages [162, 163]:

e For high-concentration solution or polymer melt, it is hard to achieve jet
initiation in normal electrospinning because of the high viscosity; however,
centrifugal force can easily transport these fluids.

e Higher nanofiber production rate.

e Finer nanofibers.

e Lower jet initiation voltage.

1.5 Nanofiber collection

Electrospun nanofibers are generally collected as randomly distributed nanofiber
mats, the morphology of which is similar to a nonwoven fibrous mat. In lots of
studies, such a fibrous structure was described as a fiber web, fiber sheet, nonwoven
fiber, and membrane. To meet specific applications, nanofibers are collected into
different structures from nonwoven fibers. Numerous setups have been developed to
manipulate nanofiber deposition. As a result, aligned nanofibers, nanofiber yarn,
and 3D nanofiber structures have been achieved.

1.5.1 Selective nanofiber deposition

Due to the large amount of electrostatic charges carried by nanofibers, there is
significant Coulombic repulsion force between these fibers. As a result, the nanofiber
deposition area on the collector is usually large and with low fiber collection
efficiency. An auxiliary electric field could improve the control over nanofiber
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Figure 1.18. Auxiliary electric field-assisted fiber deposition. Reproduced with permission from Elsevier [164].

Target

deposition [83, 84]. Charged rings have been used to restrain nanofiber disposition
[164] to a small area; the schematic diagram of this electrospinning setup is shown in
figure 1.18. When an auxiliary electrode was used in electrospinning to control fiber
deposition, nanofibers in a 2D pattern or 3D structure could be fabricated [165, 166].
During the electrospinning process, the Taylor cone was stabilized and the jet
whipping was converged sufficiently [165]. This method could provide a practical
strategy for the fabrication of nanofibers with elaborate structures.

By electrospinning nanofibers onto a columnar-shaped collector, instead of flat
collector as usual, tubular nanofibers can be obtained [167, 168]; these will have
promising potentials in biomedical and industrial applications. Figure 1.19 shows
complex nanofiber tubes collected on columnar collectors.

In addition, when a patterned substrate is used to collect nanofibers, the electric
field does not distribute uniformly on the substrate, the collected nanofibers show
predesigned arrangement on the substrate [169-171]. Figure 1.20(a) shows that the
tips on the substrate can centralize the electric field, and as a result, more nanofibers
are drawn to these tips and collected PEO nanofibers show a patterned structure
(figure 1.20(b)).

1.5.2 Aligned nanofibers

When nanofibers are collected unidirectionally, the tensile strength of nanofiber
mats in the fiber-aligned direction can be significantly improved. Collecting nano-
fibers using a high-speed rotating drum collector or disc is an efficient way to obtain
aligned nanofibers [103, 172, 173]. Aligned nanofibers can also be collected using a

1-26



Energy Harvesting Properties of Electrospun Nanofibers
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Figure 1.19. (a) Schematic illustration of columnar collectors for fabricating fibrous tubes. (®: columnar
collectors and @: fibrous tubes.) (b) Fabricated fibrous tube (diameter = 500 pm, inset is the cross-section
image). (c) SEM image of nanofibers. Reproduced with permission from American Chemical Society [168].
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Figure 1.20. (a) Simulation of electric potential and electrical field distribution on the substrate, (b) SEM
image of PEO fiber deposited on a patterned substrate for 5 min. Reproduced with permission from American
Chemical Society [169].
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stationary parallel electrodes collector [174—176] or tip collector [177]. Figure 1.21
shows aligned short nanofibers collected by two parallel Si substrates. When using
two magnet bars as the collector, it is also possible to collect aligned wavy polymeric
nanofibers [178].

In another work, an electrode with counter polarity voltage applied was used to
govern fiber deposition [179]. Fiber placement and alignment on both microscale
and nanoscale can be achieved through controlling the shape and magnitude of the
electric field of the counter electrode. This technology demonstrates the ability to
make nanofiber membranes with tailored porosity (figure 1.22).

AC voltage has the potential of minimizing jet whipping instability and enhancing
fiber alignment. A method named biased AC electrospinning used amplified AC
voltage to perform electrospinning with improved fiber alignment. When the
electrospinning process is driven by DC voltage, it has a high level of whipping
instability due to the action of repulsive Coulombic force. Meanwhile, AC power
carries both positive and negative charges, and both attractive and repulsive
Coulombic forces take effect during electrospinning and lead to a weakening of
overall whipping instability [180].

Figure 1.21. SEM image of aligned nanofibers collected across two parallel Si substrates. Reproduced with
permission from American Chemical Society [174].

} - ‘ I
MUixilfary «

: . Spinneret -+ Electrode

Figure 1.22. A straight fiber being collected with auxiliary counter electrode, and SEM image of collected
fibers. Reproduced with permission from American Chemical Society [179].
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1.5.3 Nanofiber yarns

The first attempt in electrospinning nanofiber yarns goes back to the 1930s; the
involved apparatus contained a fiber spinning wheel and a fiber yarn collecting
device [181]. Recently, the production of uniaxial nanofiber bundles or twisted
nanofiber yarns by electrospinning has drawn increasing interest because yarns can
be woven or knitted into 2D fabrics or 3D structures with tailored structure,
mechanical strength, and porosity. Nanofibers collected in a yarn form can find
applications in the traditional textile industry, and creates possibilities for a greater
number of new applications. Especially, the large-scale production of nanofiber
yarns is becoming more and more imperative. The most popular setups for nanofiber
yarn/bundle production are listed in table 1.4, and can be divided into the following
categories:
e Collect aligned nanofibers in a short length first (e.g. two rotating discs, high-
speed collector) and then twist them into twisted short nanofiber yarns [182—
185].
e Collect short twisted yarns directly using two rotating tube collectors [186].
e Collect continuous nanofiber bundles with the help of airflow [187, 188].
e Use a water bath as the collector to obtain continuous nanofiber bundles
[189-191].
e Use an auxiliary electrode to govern nanofiber collection for obtaining
nanofiber bundles [192-194].
e Apply both positive and negative potentials in electrospinning to improve
nanofiber alignment and collect continuous nanofiber bundles [195-197].
e Use a rotating funnel as the collector to obtain continuously twisted nano-
fiber yarns directly [198-203].
e Wrap electrospun nanofibers around conventional filaments or yarns to
obtain composite nanofiber yarns [204, 205].
e Use AC potential to electrospin nanofibers instead of DC potential, and then
collect continuous nanofiber bundles [206].

In addition to solution electrospinning, direct yarn production has also been
realized in melt electrospinning. Polypropylene nanofiber yarn was continuously
manufactured by a melt electrospinning method, wherein suction airflow was used to
facilitate the formation of aligned nanofiber strand. The twisting of yarn strands was
realized through a tailored rotating collector [188]. In another interesting work, AC
electrospinning was used to generate nanofiber bundles directly in the absence of a
collector [206]. Smoke-like nanofibers were generated from a rod electrode. Because
of the existence of both positive changes and negative changes, they are easy to
manipulate and can be effectively wound into nanofiber yarns (figure 1.23).

1.6 Summary and outlook

The science and engineering of nanofiber electrospinning technologies have
advanced rapidly in recent years. Many successful attempts to improve electro-
spinning yield, nanofiber and nanofiber membrane quality, controlled nanofiber
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FUSE

Figure 1.23. (a) Schematic diagram of the AC electrospinning setup, (b) generated polyvinyl butyral nanofiber
plume, and (c) SEM image of nanofiber yarn (scale bar = 5 pm). Reproduced with permission from Royal
Society of Chemistry [206].

deposition, and secondary nanofibrous structure have contributed to the exciting
development of various advanced electrospinning technologies. Commercial pro-
duction of electrospun nanofibers has also been realized.

In spite of the enormous amount of efforts made to further electrospinning
technology, there are still some major challenges in this field, e.g. small production
rate of nanofiber yarn, high electrical hazard risk associated with needleless
electrospinning, and large fiber diameter in melt electrospinning. Future research
on electrospinning should primarily focus on the large-scale production of high-
quality nanofibers with improved safety and efficiency.

1. Near-field electrospinning has the ability of producing delicate fiber struc-
tures in 2D or 3D arrangements; however, the fiber diameter is much larger
than that of conventional needle electrospinning and the fiber production
rate is much lower. An important trend in near-field electrospinning is to
become more productive, e.g. though multijet synchronous printing, and to
have the ability of fabricating nanofiber-based real structures.

2. The current yarn electrospinning technology is either based on needle
electrospinning that has a low nanofiber production rate or has a low yarn
production efficiency in needleless electrospinning. The large-scale produc-
tion of nanofiber yarn can greatly expand the application of electrospun
nanofibers.

3. The needleless electrospinning technologies generally require high voltage to
initiate jet ejection and ensure continuous electrospinning. The high voltage
can lead to electrical discharge, and even fire/explosion hazards. The
utilization of auxiliary fields, e.g. a magnetic field, airflow field, or
centrifugal force, will effectively facilitate the electrospinning process.
Results of this would include reducing the critical voltage, thinning the fiber
diameter, and improving nanofiber production rate; therefore, this is a
promising future direction for energy-efficient, safe production of nanofibers
on a large scale.

4. Melt electrospinning is an environmentally friendly process, and melt
electrospun fibers are of great importance in biomedical, filtration, and
textile areas. Due to the deficiency of free charge in polymer melt, the fiber
diameter of melt electrospinning is normally at the micrometer scale. The
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utilization of airflow or centrifugal force can effectively improve melt jet
stretching and produce thin melt electrospun fibers. The production of
thinner fibers in melt electrospinning will be an important research direction
in the future.
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